Magyarországi nyerstejek mikrobiológiai monitorozása
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.2.17Kulcsszavak:
kórokozók, monitorozás, emberi egészség, tartálytejAbsztrakt
Tanulmányunk célja az ország különböző részein található tejgazdaságok tartálytejének kórokozó mikroorganizmusokkal kapcsolatos állapotának felmérése volt. Magyarországon a nyerstej árkonzisztens tanúsítása során a szabványoknak megfelelően határozzák meg az összcsíraszámot, a szomatikus sejtszámot és az inhibitor jelenlétét. Sajnálatos, hogy más kórokozó baktériumokat nem vizsgálnak, bár köztudott, hogy a tej kiváló táptalaj ezeknek a mikroorganizmusoknak. A nyerstejfogyasztás növekvő tendenciája növeli a kórokozók és az antibiotikum-rezisztens kórokozók élelmiszer eredetű terjedését. Ezért szerettünk volna átfogó képet kapni a nagyobb hazai szarvasmarha-tenyésztő gazdaságok mikrobiológiai hátteréről. Az ország 16 helyszínéről gyűjtöttünk nyerstejmintákat, és a hat hónapos vizsgálat során Listeria, Salmonella, Coliform, E. coli, Staphylococcus aureus, Clostridium és Enterococcus faecalis jelenlétét vizsgáltuk 4/1998. (XI.11) EüM rendelet alapján. A minták 91,9 %-a megfelelő összcsíraszámmal rendelkezett, azonban a Listeria, Coliform és E. faecalis 14,0 %, 15,5 % és 20,0 %-ban előfordult a határértéket meghaladó mennyiségben. E. coli az esetek 13,3 %-ában, míg Listeria spp. a minták harmadában fordult elő. A tanulmány kimutatta, hogy fontos lenne a minták időnkénti ellenőrzése, mielőtt a nyerstej fogyasztása komoly közegészségügyi kockázatot jelentene. Az összes csíraszám mindössze négy megyében haladta meg a küszöbértéket. Ezek a megállapítások rávilágítanak a lehetséges egészségügyi kockázatokra (élelmiszer eredetű betegségek).
Hivatkozások
Adams, V., Han, X., Lyras, D., & Rood, J. I. (2018). Antibiotic resistance plasmid and mobile genetic elements of Clostridium perfringens. Plasmid, 99, 32-39. https://doi.org/10.1016/j.plasmid.2018.07.002
Addis, M. F., Tanca, A., Uzzau, S., Oikonomou, G., Bicalho, R. C., & Moroni, P. (2016). The bovine milk microbiota: Insights and perspectives from -omics studies. Molecular BioSystems, 12(8), 2359-2372. https://doi.org/10.1039/C6MB00217J
Bencardino, D., Amagliani, G., & Brandi, G. (2021). Carriage of Staphylococcus aureus among food handlers: An ongoing challenge in public health. Food Control, 130, 108362. https://doi.org/10.1016/j.foodcont.2021.108362
Berhanu, L., Gume, B., Kassa, T., Dadi, L.S., Tegegne, D., Getnet, M., Bediru, H., Getaneh, A., Suleman, S., Mereta, S.T. (2021) Microbial quality of raw cow milk and its predictors along the dairy value chain in Southwest Ethiopia. International Journal of Food Microbiology. 350, https://doi.org/10.1016/j.ijfoodmicro.2021.109228
Bi, R., Qin, T., Fan, W., Ma, P., & Gu, B. (2018). The emerging problem of linezolid-resistant enterococci. Journal of Global Antimicrobial Resistance, 13, 11-19. https://doi.org/10.1016/j.jgar.2017.10.018
Claeys, W. L., Cardoen, S., Daube, G., De Block, J., Dewettinck, K., Dierick, K., De Zutter, L., Huyghebaert, A., Imberechts, H., Thiange, P., Vandenplas, Y., & Herman, L. (2013). Raw or heated cow milk consumption: Review of risks and benefits. New Zealand Science Review, 70(3), 70. https://doi.org/10.26686/nzsr.v70.8727
Dalzini, E., Bernini, V., Bertasi, B., Daminelli, P., Losio, M-N., Varisco, G. (2016). Survey of prevalence and seasonal variability of Listeria monocytogenes in raw cow milk from Northern Italy. Food Control, 60, 466-470. https://doi.org/10.1016/j.foodcont.2015.08.019
Disson, O., Moura, A., & Lecuit, M. (2021). Making sense of the biodiversity and virulence of Listeria monocytogenes. Trends in Microbiology, 29(9), 811-822. https://doi.org/10.1016/j.tim.2021.01.008
Dunn, S. J., Connor, C., & McNally, A. (2019). The evolution and transmission of multidrug-resistant Escherichia coli and Klebsiella pneumoniae: The complexity of clones and plasmids. Current Opinion in Microbiology, 51, 51-56. https://doi.org/10.1016/j.mib.2019.06.004
Eng, S. K., Pusparaja, P., Ab Mutalib, N. S., Ser, H. L., Chan, K. G., & Lee, L. H. (2015). Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8(3), 284-293. https://doi.org/10.1080/21553769.2015.1051243
Godziszewska, J., Pogorzelska-Nowicka, E., Brodowska, M., Jagura-Burdzy, G., & Wierzbicka, A. (2018). Detection in raw cow’s milk of coliform bacteria: Reservoir of antibiotic resistance. LWT, 93, 634–640. https://doi.org/10.1016/j.lwt.2018.04.019
Hill, B., Smythe, B., Lindsay, D., Shepherd, J. (2012). Microbiology of raw cow milk in New Zealand. International Journal of Food Microbiology, 157(2), 305-308. https://doi.org/10.1016/j.ijfoodmicro.2012.03.031
Jancsó, A. (2015). A termelői nyers tehéntej közvetlen értékesítésének gyakorlata és a minőség értékelése [Doktori disszertáció, Nyugat-Magyarországi Egyetem]. Mosonmagyaróvár.
Kao, P. H. N., & Kline, K. A. (2019). Dr Jekyll and Mr Hide: How Enterococcus faecalis subverts the host immune response to cause infection. Journal of Molecular Biology, 431(16), 2932-2945. https://doi.org/10.1016/j.jmb.2019.05.030
Khalid, L., Fatima, A., Nawaz, S., Khurram, A., Hussain, Z., & Sajid, I. (2024). Quality, safety, and microbiological assessment of loose market milk and antibiotic resistance analysis of Escherichia coli isolates in different areas of Faisalabad, Pakistan. International Dairy Journal, 154, 105936. https://doi.org/10.1016/j.idairyj.2024.105936
Antonio Lourenco, A., Maria Fraga-Corral, M., Lorenzo De Colli, L., Mary Moloney, M., Martin Danaher, M., Kieran Jordan, K. (2020). Determination of the presence of pathogens and anthelmintic drugs in raw milk and raw milk cheeses from small scale producers in Ireland. LWT, 130. https://doi.org/10.1016/j.lwt.2020.109347
Li, N., Wang, Y., You, C., Ren, J., Chen, W., Zheng, H., & Liu, Z. (2018). Variation in raw milk microbiota throughout 12 months and the impact of weather conditions. Scientific Reports, 8(1), 2371. https://doi.org/10.1038/s41598-018-20862-8
Liu, G. Y., Essex, A., Buchanan, J. T., Datta, V., Hoffman, H. M., Bastian, J. F., Fierer, J., & Nizet, V. (2005). Staphylococcus aureus golden pigment impairs neutrophil killing and promotes virulence through its antioxidant activity. Journal of Experimental Medicine, 202(2), 209-215. https://doi.org/10.1084/jem.20050846
Loss, G., Apprich, S., Waser, M., Kneifel, W., Genuneit, J., Büchele, G., Weber, J., Sozanka, B., Danielewicz, H., Horak, E., van Neerven, R. J. J., Heederik, D., Lorenzen, P. C., von Mutius, E., Braun-Fahrlander, C., & GABRIELA Study Group. (2011). The protective effect of farm milk consumption on childhood asthma and atopy: The GABRIELA study. Journal of Allergy and Clinical Immunology, 128(4), 766-773. https://doi.org/10.1016/j.jaci.2011.07.048
Luo, Q., Wang, Y., & Xiao, Y. (2020). Prevalence and transmission of mobilised colistin resistance (mcr) gene in bacteria common to animals and humans. Biosafety and Health, 2(2), 71-78. https://doi.org/10.1016/j.bsheal.2020.05.001
Martin, N. H., Evanowski, R. L., & Wiedmann, M. (2023). Invited review: Redefining raw milk quality – Evaluation of raw milk microbiological parameters to ensure high-quality processed dairy products. Journal of Dairy Science, 106(3), 1502-1517. https://doi.org/10.3168/jds.2022-22416
Miller, W. R., Murray, B. E., Rice, L. B., & Arias, C. A. (2020). Resistance in vancomycin-resistant enterococci. Infectious Disease Clinics of North America, 34(4), 751-771. https://doi.org/10.1016/j.idc.2020.08.004
Moor, J., Aebi, S., Rickli, S., Mostacci, N., Overesch, G., Oppliger, A., & Hilty, M. (2021). Dynamics of extended-spectrum cephalosporin-resistant Escherichia coli in pig farms: A longitudinal study. International Journal of Antimicrobial Agents, 58(3), 106382. https://doi.org/10.1016/j.ijantimicag.2021.106382
Nagy, Á., Székelyhidi, R., Hanczné Lakatos, E., & Kapcsándi, V. (2021). Review on the occurrence of the mcr-1 gene causing colistin resistance in cow’s milk and dairy products. Heliyon, 7(4), e06800. https://doi.org/10.1016/j.heliyon.2021.e06800
Ndahetuye, J. B., Artursson, K., Båge, R., Ingabire, A., Karege, C., Djangwani, J., Nyman, A.-K., Ongol, M. P., Tukei, M., & Persson, S. (2020). MILK symposium review: Microbiological quality and safety of milk from farm to milk collection centres in Rwanda. Journal of Dairy Science, 103(11), 9730-9739. https://doi.org/10.3168/jds.2020-18302
Oliver, S. P., Jayarao, B. M., & Almeida, R. A. (2005). Foodborne pathogens in milk and the dairy farm environment: Food safety and public health implications. Foodborne Pathogens and Disease, 2(2), 115-129. https://doi.org/10.1089/fpd.2005.2.115
Oikonomou, G., Addis, M. F., Chassard, C., Nader-Macias, M. E. F., Grant, I., Delbès, C., Bogni, C. I., Le Loir, Y., & Even, S. (2020). Milk microbiota: What are we exactly talking about? Frontiers in Microbiology, 11, 60. https://doi.org/10.3389/fmicb.2020.00060
Quigley, L., O’Sullivan, O., Stanton, C., Beresford, T. P., Ross, R. P., Fitzgerald, G. F., & Cotter, P. D. (2013). The complex microbiota of raw milk. FEMS Microbiology Reviews, 37(5), 664-698. https://doi.org/10.1111/1574-6976.12030
Peles, F., Máthéné Szigeti, Zs., Béri, B., & Szabó, A. (2008). The effect of keeping technology on the microbiological status of raw milk. Acta Agraria Debreceniensis, 31, 49-54. https://doi.org/10.34101/actaagrar/31/3009
Peles, F., Wagner, M., Varga, L., Hein, I., Rieck, P., Gutser, K., Keresztúri, P., Kardos, G., Turcsányi, I., Béri, B., & Szabó, A. (2007). Characterisation of Staphylococcus aureus strains isolated from bovine milk in Hungary. International Journal of Food Microbiology, 118(2), 186-193. https://doi.org/10.1016/j.ijfoodmicro.2007.07.010
Rood, J. I., Adams, V., Lacey, J. A., Lyras, D., McClane, B. A., Melville, S. B., Moore, R. J., Popoff, M. R., Sarker, M. R., Songer, J. G., Uzal, F. A., & Van Immerseel, F. (2018). Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe, 53, 5-10. https://doi.org/10.1016/j.anaerobe.2018.04.011
Singh, G. M., Micha, R., Khatibzadeh, S., Shi, P., Lim, S., Andrews, K. G., Engell, R. E., Ezzati, M., Mozaffarian, D., & Global Burden of Diseases Nutrition and Chronic Diseases Expert Group. (2015). Global, regional, and national consumption of sugar-sweetened beverages, fruit juices, and milk: A systematic assessment of beverage intake in 187 countries. PLoS ONE, 10(8), e0124845. https://doi.org/10.1371/journal.pone.0124845
Sozańska, B., Pearce, N., Dudek, K., & Cullinan, P. (2013). Consumption of unpasteurised milk and its effects on atopy and asthma in children and adult inhabitants in rural Poland. Allergy, 68(5), 644-650. https://doi.org/10.1111/all.12147
Stulova, I., Adamberg, S., Krisciunaite, T., Kampura, M., Blank, L., Laht, T-M. (2010). Microbiological quality of raw milk produced is Estonia. Letters In Applied Microbiology. 51(6), 683-690. https://doi.org/10.1111/j.1472-765X.2010.02951.x
Szakály, S. (Ed.). (2001). Tejgazdaságtan. Dinasztia Kiadó.
Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. E., & Fowler, V. G., Jr. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603-661. https://doi.org/10.1128/CMR.00134-14
Varga, L. (2016). Nyers tejek és funkcionális savanyú tejtermékek bakteriológiája, higiéniája [Doctoral dissertation, Széchenyi István Egyetem]. Mosonmagyaróvár.
Willis, C., Jørgensen, F., Aird, H., Elviss, N., Fox, A., Jenkins, C., Fenelon, D., Sadler-Reeves, L., & McLauchlin, J. (2018). An assessment of the microbiological quality and safety of raw drinking milk on retail sale in England. Journal of Applied Microbiology, 124(2), 535-546. https://doi.org/10.1111/jam.13660
Downloads
Megjelent
Hogyan kell idézni
Folyóirat szám
Rovat
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
