Szamócanektár (Fragaria × ananassa) antioxidáns és polifenoltartalom növelésének lehetőségei különböző gyógynövények hozzáadásával
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.1.39Kulcsszavak:
szamóca, borsmenta, citromfű, gyömbér, FRAP, Folin-CiocalteuAbsztrakt
A kutatás célja annak vizsgálata volt, hogy a különböző gyógy- és fűszernövényekkel (borsmenta, citromfű, gyömbér) adalékolt szamócanektárok (Fragaria × ananassa) antioxidáns- és polifenoltartalma állandó vagy csökkenő tendenciát mutat az eltarthatósági idő előrehaladtával. Az eper feldolgozása után az előkészített fűszernövényeket 1,0 és 2,0 m/m %-os koncentrációban adtuk a mintákhoz. A kísérletek során a citromfű 1 %-os adagolása több mint kétszeresére (2.93-9.19 mg AAE mg/mL), 2 %-os hozzáadott mennyisége pedig több mint hatszorosára növelte a termékekben lévő antioxidánsok mennyiségét (2.93-17.16 mg AAE mg/mL) a mérés első napján a kontroll mintákkal összehasonlítva. A jótékony hatású vegyületek koncentrációja azonban az eltarthatósági idő végére (42. nap) csökkent. A borsmenta adagolása a legjobb esetben 9.99 mg AAE/mL-re növelte az antioxidánsok mennyiségét is. A gyömbér hozzáadása azonban nem növelte, hanem inkább mérsékelte a hasznos vegyületek koncentrációját az általunk vizsgált mintamátrixban (1.90 mg AAE/mL). Az érzékszervi vizsgálatok pedig azt mutatják, hogy a kontrollterméken kívül az 1 és 2 m/m %-os gyömbérrel kiegészített minták nyerték el leginkább a kóstolók tetszését.
Hivatkozások
Aboagye, G., Tuah, B., Bansah, E., Tettey, C., & Hunkpe, G. (2021). Comparative evaluation of antioxidant properties of lemongrass and other tea brands. Scientific African, 11, e00718. https://doi.org/10.1016/j.sciaf.2021.e00718
Alim, Md. A., Karim, A., Shohan, Md. A. R., Sarker, S. C., Khan, T., Mondal, S., Esrafil, Md., Linkon, K. Md. M. R., Rahman, Md. N., Akther, F., & Begum, R. (2023). Study on stability of antioxidant activity of fresh, pasteurized, and commercial fruit juice during refrigerated storage. Food and Humanity, 1, 1117-1124. https://doi.org/10.1016/j.foohum.2023.09.008
Annamalai, G., Kathiresan, S., & Kannappan, N. (2016). [6]-Shogaol, a dietary phenolic compound, induces oxidative stress mediated mitochondrial dependant apoptosis through activation of proapoptotic factors in Hep-2 cells. Biomedicine & Pharmacotherapy, 82, 226-236. https://doi.org/10.1016/j.biopha.2016.04.044
Barba, F. J., Esteve, M. J., Tedeschi, P., Brandolini, V., & Frígola, A. (2013). A Comparative Study of the Analysis of Antioxidant Activities of Liquid Foods Employing Spectrophotometric, Fluorometric, and Chemiluminescent Methods. Food Analytical Methods, 6(1), 317-327. https://doi.org/10.1007/s12161-012-9441-3
Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of "Antioxidant Power": The FRAP Assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
Bodor, Z., Pergel, B., & Benedek, C. (2021). Impact of heat treatment and flavorings on the antioxidant capacity of black and green tea. Progress in Agricultural Engineering Sciences, 16(S2), 55-63. https://doi.org/10.1556/446.2020.20007
Brown, N., John, J. A., & Shahidi, F. (2019). Polyphenol composition and antioxidant potential of mint leaves. Food Production, Processing and Nutrition, 1(1). https://doi.org/10.1186/s43014-019-0001-8
Budreviciute, A., Damiati, S., Sabir, D. K., Onder, K., Schuller-Goetzburg, P., Plakys, G., Katileviciute, A., Khoja, S., & Kodzius, R. (2020). Management and Prevention Strategies for Non-communicable Diseases (NCDs) and Their Risk Factors. Frontiers in Public Health, 8. https://www.frontiersin.org/articles/10.3389/fpubh.2020.574111
Buendía, B., Gil, M. I., Tudela, J. A., Gady, A. L., Medina, J. J., Soria, C., López, J. M., & Tomás-Barberán, F. A. (2010). HPLC-MS analysis of proanthocyanidin oligomers and other phenolics in 15 strawberry cultivars. Journal of Agricultural and Food Chemistry, 58(7), 3916-3926. https://doi.org/10.1021/jf9030597
Chew, B., Mathison, B., Kimble, L., McKay, D., Kaspar, K., Khoo, C., Chen, C.-Y. O., & Blumberg, J. (2019). Chronic consumption of a low calorie, high polyphenol cranberry beverage attenuates inflammation and improves glucoregulation and HDL cholesterol in healthy overweight humans: A randomized controlled trial. European Journal of Nutrition, 58(3), 1223-1235. https://doi.org/10.1007/s00394-018-1643-z
Chumyam, A., Whangchai, K., Jungklang, J., Faiyue, B., & Saengnil, K. (2013). Effects of heat treatments on antioxidant capacity and total phenolic content of four cultivars of purple skin eggplants. ScienceAsia, 39(3), 246-251. https://doi.org/10.2306/scienceasia1513-1874.2013.39.246
Elchaghaby, M. A., Abd El-Kader, S. F., & Aly, M. M. (2022). Bioactive composition and antibacterial activity of three herbal extracts (lemongrass, sage, and guava leaf) against oral bacteria: An in vitro study. Journal of Oral Biosciences, 64(1), 114-119. https://doi.org/10.1016/j.job.2022.01.005
Faddladdeen, K. A. jalil. (2022). The possible protective and therapeutic effects of ginger and cinnamon on the testis and coda epididymis of streptozotocin-induced-diabetic rats: Histological and biochemical studies. Saudi Journal of Biological Sciences, 29(12), 103452. https://doi.org/10.1016/j.sjbs.2022.103452
Francisco, V., Costa, G., Figueirinha, A., Marques, C., Pereira, P., Miguel Neves, B., Celeste Lopes, M., García-Rodríguez, C., Teresa Cruz, M., & Teresa Batista, M. (2013). Anti-inflammatory activity of Cymbopogon citratus leaves infusion via proteasome and nuclear factor-κB pathway inhibition: Contribution of chlorogenic acid. Journal of Ethnopharmacology, 148(1), 126-134. https://doi.org/10.1016/j.jep.2013.03.077
Fulda, S. (2010). Exploiting mitochondrial apoptosis for the treatment of cancer. Mitochondria, Apoptosis and Cancer, 10(6), 598-603. https://doi.org/10.1016/j.mito.2010.05.001
Gan, F.-F., Nagle, A. A., Ang, X., Ho, O. H., Tan, S.-H., Yang, H., Chui, W.-K., & Chew, E.-H. (2011). Shogaols at proapoptotic concentrations induce G2/M arrest and aberrant mitotic cell death associated with tubulin aggregation. Apoptosis, 16(8), 856-867. https://doi.org/10.1007/s10495-011-0611-3
Häkkinen, S. H., & Törrönen, A. R. (2000). Content of flavonols and selected phenolic acids in strawberries and Vaccinium species: Influence of cultivar, cultivation site and technique. Food Research International, 33(6), 517-524. https://doi.org/10.1016/S0963-9969(00)00086-7
Harris, S., Brunton, N., Tiwari, U., & Cummins, E. (2015). Human exposure modelling of quercetin in onions (Allium cepa L.) following thermal processing. Food Chemistry, 187, 135-139. https://doi.org/10.1016/j.foodchem.2015.04.035
Holzwarth, M., Korhummel, S., Kammerer, D. R., & Carle, R. (2012). Thermal inactivation of strawberry polyphenoloxidase and its impact on anthocyanin and color retention in strawberry (Fragaria x ananassa Duch.) purées. European Food Research and Technology, 235(6), 1171-1180. https://doi.org/10.1007/s00217-012-1852-2
Jaakola, L., & Hohtola, A. (2010). Effect of latitude on flavonoid biosynthesis in plants. Plant, Cell & Environment, 33(8), 1239-1247. https://doi.org/10.1111/j.1365-3040.2010.02154.x
Khan, I. S., Dar, K. B., Ganie, S. A., & Ali, Md. N. (2022). Toxicological impact of sodium benzoate on inflammatory cytokines, oxidative stress and biochemical markers in male Wistar rats. Drug and Chemical Toxicology, 45(3), 1345-1354. https://doi.org/10.1080/01480545.2020.1825472
Kim, S.-Y., Jeong, S.-M., Kim, S.-J., Jeon, K.-I., Park, E., Park, H.-R., & Lee, S.-C. (2006). Effect of Heat Treatment on the Antioxidative and Antigenotoxic Activity of Extracts from Persimmon (Diospyros kaki L.) Peel. Bioscience, Biotechnology, and Biochemistry, 70(4), 999-1002. https://doi.org/10.1271/bbb.70.999
Koyama, R., Ishibashi, M., Fukuda, I., Okino, A., Osawa, R., & Uno, Y. (2022). Pre- and Post-Harvest Conditions Affect Polyphenol Content in Strawberry (Fragaria × ananassa). Plants, 11(17), 2220. https://doi.org/10.3390/plants11172220
López-Lázaro, M. (2009). Distribution and biological activities of the flavonoid luteolin. Mini Reviews in Medicinal Chemistry, 9(1), 31-59. https://doi.org/10.2174/138955709787001712
Mahdavikia, F., Saharkhiz, M. J., & Karami, A. (2017). Defensive response of radish seedlings to the oxidative stress arising from phenolic compounds in the extract of peppermint (Mentha × piperita L.). Scientia Horticulturae, 214, 133-140. https://doi.org/10.1016/j.scienta.2016.11.029
Mao, Q.-Q., Xu, X.-Y., Cao, S.-Y., Gan, R.-Y., Corke, H., Beta, T., & Li, H.-B. (2019). Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods, 8(6), 185. https://doi.org/10.3390/foods8060185
Mohammad, A., Falahi, E., Mohd Yusof, B.-N., Hanipah, Z. N., Sabran, M. R., Mohamad Yusof, L., & Gheitasvand, M. (2021). The effects of the ginger supplements on inflammatory parameters in type 2 diabetes patients: A systematic review and meta-analysis of randomised controlled trials. Clinical Nutrition ESPEN, 46, 66-72. https://doi.org/10.1016/j.clnesp.2021.10.013
Mustafa, A. M., Angeloni, S., Abouelenein, D., Acquaticci, L., Xiao, J., Sagratini, G., Maggi, F., Vittori, S., & Caprioli, G. (2022). A new HPLC-MS/MS method for the simultaneous determination of 36 polyphenols in blueberry, strawberry and their commercial products and determination of antioxidant activity. Food Chemistry, 367, 130743. https://doi.org/10.1016/j.foodchem.2021.130743
Oliveira, A., Almeida, D. P. F., & Pintado, M. (2014). Changes in Phenolic Compounds During Storage of Pasteurized Strawberry. Food and Bioprocess Technology, 7(6), 1840-1846. https://doi.org/10.1007/s11947-013-1239-9
Olofinnade, A. T., Onaolapo, A. Y., Onaolapo, O. J., & Olowe, O. A. (2021). The potential toxicity of food-added sodium benzoate in mice is concentration-dependent. Toxicology Research, 10(3), 561-569. https://doi.org/10.1093/toxres/tfab024
Özcan, M. M. (2022). The effect of ginger (Zingiber officinale) powders at different concentrations on bioactive compounds, antioxidant activity, phenolic constituents, nutrients and sensory characteristics of wheat bread. International Journal of Gastronomy and Food Science, 28, 100532. https://doi.org/10.1016/j.ijgfs.2022.100532
Palermo, M., Pellegrini, N., & Fogliano, V. (2014). The effect of cooking on the phytochemical content of vegetables. Journal of the Science of Food and Agriculture, 94(6), 1057-1070. https://doi.org/10.1002/jsfa.6478
Palmieri, L., Masuero, D., Martinatti, P., Baratto, G., Martens, S., & Vrhovsek, U. (2017). Genotype-by-environment effect on bioactive compounds in strawberry (Fragaria x ananassa Duch.). Journal of the Science of Food and Agriculture, 97(12), 4180-4189. https://doi.org/10.1002/jsfa.8290
Qin, Y., Teixeira da Silva, J. A., Zhang, L., & Zhang, S. (2008). Transgenic strawberry: State of the art for improved traits. Biotechnology Advances, 26(3), 219-232. https://doi.org/10.1016/j.biotechadv.2007.12.004
Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C. & Sharifi-Rad, J. (2020). Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00694
Sik, B., Székelyhidi, R., Lakatos, E., Kapcsándi, V., & Ajtony, Zs. (2022). Analytical procedures for determination of phenolics active herbal ingredients in fortified functional foods: An overview. European Food Research and Technology, 248(2), 329-344. https://doi.org/10.1007/s00217-021-03908-6
Simmonds, M. S. J., Howes, M.-J., Irving, J. (2017). The Gardener’s Companion to Medicinal Plants. Frances Lincoln in association with Kew Publishing. ISBN 9780711238107.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology, 299, 1999, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Spence, C. (2023). Ginger: The pungent spice. International Journal of Gastronomy and Food Science, 33, 100793. https://doi.org/10.1016/j.ijgfs.2023.100793
Székelyhidi, R., Lakatos, E., Sik, B., Nagy, Á., Varga, L., Molnár, Z., & Kapcsándi, V. (2022). The beneficial effect of peppermint (Mentha X Piperita L.) and lemongrass (Melissa officinalis L.) dosage on total antioxidant and polyphenol content during alcoholic fermentation. Food Chemistry: X, 13, 100226. https://doi.org/10.1016/j.fochx.2022.100226
Urün, I., Attar, S. H., Sönmez, D. A., Gündeşli, M. A., Ercişli, S., Kafkas, N. E., Bandić, L. M., & Duralija, B. (2021). Comparison of Polyphenol, Sugar, Organic Acid, Volatile Compounds, and Antioxidant Capacity of Commercially Grown Strawberry Cultivars in Turkey. Plants 10(8). https://doi.org/10.3390/plants10081654
Wang, H., Chen, G., Guo, X., Abbasi, A. M., & Liu, R. H. (2016). Influence of the stage of ripeness on the phytochemical profiles, antioxidant and antiproliferative activities in different parts of Citrus reticulata Blanco cv. Chachiensis. LWT – Food Science and Technology, 69, 67-75. https://doi.org/10.1016/j.lwt.2016.01.021
Wichchukit, S., & O’Mahony, M. (2015). The 9-point hedonic scale and hedonic ranking in food science: Some reappraisals and alternatives. Journal of the Science of Food and Agriculture, 95(11), 2167-2178. https://doi.org/10.1002/jsfa.6993
Ziauddeen, N., Rosi, A., Del Rio, D., Amoutzopoulos, B., Nicholson, S., Page, P., Scazzina, F., Brighenti, F., Ray, S., & Mena, P. (2019). Dietary intake of (poly)phenols in children and adults: Cross-sectional analysis of UK National Diet and Nutrition Survey Rolling Programme (2008–2014). European Journal of Nutrition, 58(8), 3183-198. https://doi.org/10.1007/s00394-018-1862-3
Downloads
Megjelent
Hogyan kell idézni
Folyóirat szám
Rovat
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.