Ipari fermentációs lehetőségek az élelmiszerek és a sertéstakarmányok előállításában: Irodalmi áttekintés

Szerzők

DOI:

https://doi.org/10.17108/ActAgrOvar.2025.66.1.69

Kulcsszavak:

takarmányozás, élelmiszeripar, szilárd fázisú fermentáció, folyékony fázisú fermentáció

Absztrakt

A tanulmány átfogó képet nyújt a fermentáció biológiai és technológiai hátteréről, valamint annak élelmiszer- és takarmányipari alkalmazási lehetőségeiről. Részletesen bemutatja a fermentáció történetét, típusait és azokat a mikrobiológiai, kémiai, illetve környezeti tényezőket, amelyek befolyásolják a folyamat sikerességét. Kiemelt figyelmet fordít a szilárd fázisú (SSF) és a folyékony fázisú fermentáció (LSF) összehasonlítására, különös tekintettel az ipari alkalmazhatóságra, költséghatékonyságra, valamint a fermentált termékek minőségére és egészségügyi hatásaira. Az LSF-technológia kifejezetten ígéretes a sertés- és baromfitakarmányozásban, ahol probiotikus és antimikrobiális hatása révén csökkentheti az antibiotikum-használatot és javíthatja az állatok emésztését, immunrendszerét, ill. teljesítményét. A fermentációs eljárások elősegítik a környezeti fenntarthatóságot is azáltal, hogy melléktermékeket és hulladékokat értékes takarmánnyá vagy bioüzemanyaggá alakítanak. Az új technológiák – mint az automatizálás, a mesterséges intelligencia vagy a genomikai eszközök – lehetővé teszik a fermentáció még pontosabb szabályozását és ipari optimalizálását. A fermentáció így kulcsszerepet kap a modern biotechnológiai fejlesztésekben és az egészségtudatos, fenntartható táplálkozási rendszerek kialakításában.

Hivatkozások

Alpár, B., Tóth, T., Ásványi, B., Lakatos, E., Zsédely, E., Berczi, E., Molnár, J. & Varga, L. (2021). Fermentált takarmányok alkalmazási lehetőségei a monogasztrikus állatok takarmányozásában. Agro Napló, 25(5), 51-52.

Ásványi, B., Reichart, O., Szigeti, J. & Varga, L. (2006). Screening and selection of Kluyveromyces strains for use in batch production of single-cell protein from cheese whey. Milchwissenschaft, 61(4), 378-381.

Ásványi-Molnár, N. (2009). Funkcionális hatású tejtermék előállítása spirulina (Arthrospira platensis) felhasználásával [Doktori (PhD) értekezés, Nyugat-magyarországi Egyetem]. Mosonmagyaróvár.

Auesukaree, C. (2017). Molecular mechanisms of the yeast adaptive response and tolerance to stresses encountered during ethanol fermentation. Journal of Bioscience and Bioengineering, 124(2), 133-142. https://doi.org/10.1016/j.jbiosc.2017.03.009

Balasubramanian, R., Schneider, E., Gunnigle, E., Cotter, P. D., Cryan, J. F., (2024). Fermented foods: Harnessing their potential to modulate the microbiota-gut-brain axis for mental health. Neuroscience & Biobehavioral Reviews, 158, 105562. https://doi.org/10.1016/j.neubiorev.2024.105562

Bolmanis, E., Dubencovs, K., Suleiko, A. & Vanags, J. (2023). Model predictive control – A stand out among competitors for fed-batch fermentation improvement. Fermentation, 9(3), 206. https://doi.org/10.3390/fermentation9030206

Brooks, P. H. (2008). Fermented liquid feed for pigs. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 3, 073. https://doi.org/10.1079/PAVSNNR20083073

Bujňák, L., Maskaľová, I. & Vajda, V. (2011). Determination of buffering capacity of selected fermented feedstuffs and the effect of dietary acid‒base status on ruminal fluid pH. Acta Veterinaria Brno, 80(3), 269-273. https://doi.org/10.2754/avb201180030269

Campbell-Platt, G. (1994). Fermented foods – A world perspective. Food Research International, 27(3), 253-257. https://doi.org/10.1016/0963-9969(94)90093-0

Chen, J., Wu, G. F., Pang, H. L., Hua, J. Y., Guan, Y. F., Zhang, M., Duan, Y. K., Qin, G. Y., Wang, L., Cai, Y. M., & Tan, Z. F. (2023). Effect of mixed Lactiplantibacillus plantarum- and Bacillus subtilis-fermented feed on growth, immunity, and intestinal health of weaner pigs. Fermentation, 9(12), 1005. https://doi.org/10.3390/fermentation9121005

Chen, B. L., Liu, J. C., Liu, M. J., Zhang, H. L., Li, X. Y., Tian, C. C., & Chen, Y. (2025). Synergistic effect of microorganisms and enzymes on nutritional value of corn stover and wheat straw. Fermentation, 11(4), 210. https://doi.org/10.3390/fermentation11040210

Council of the European Union (2023). Council recommendation on stepping up EU actions to combat antimicrobial resistance in a One Health approach. Official Journal of the European Union, C220, 1-20.

Couto, S. R. & Sanromán, M. Á. (2006). Application of solid-state fermentation to food industry – A review. Journal of Food Engineering, 76(3), 291-302. https://doi.org/10.1016/j.jfoodeng.2005.05.022

Daâssi, D., Zouari-Mechichi, H., Frikha, F., Rodríguez-Couto, S., Nasri, M. & Mechichi, T. (2016). Sawdust waste as a low-cost support-substrate for laccases production and adsorbent for azo dyes decolorization. Journal of Environmental Health Science & Engineering, 14, 1. https://doi.org/10.1186/s40201-016-0244-0

Das, A. J. & Deka, S. C. (2012). Fermented foods and beverages of the North-East India. International Food Research Journal, 19(2), 377-392.

de Castro, R. J. S., Ohara, A., Nishide, T. G., Bagagli, M. P., Dias, F. F. G. & Sato, H. H. (2015). A versatile system based on substrate formulation using agroindustrial wastes for protease production by Aspergillus niger under solid state fermentation. Biocatalysis and Agricultural Biotechnology, 4(4), 678-684. https://doi.org/10.1016/j.bcab.2015.08.010

De Roos, J. & De Vuyst, L. (2018). Acetic acid bacteria in fermented foods and beverages. Current Opinion in Biotechnology, 49, 115-119. https://doi.org/10.1016/j.copbio.2017.08.007

Deák, T., Kiskó, G., Maráz, A. & Mohácsiné Farkas, Cs. (2006). Élelmiszer-mikrobiológia. Mezőgazda Kiadó, Budapest.

Dimidi, E., Cox, S. R., Rossi, M. & Whelan, K. (2019). Fermented foods: Definitions and characteristics, impact on the gut microbiota and effects on gastrointestinal health and disease. Nutrients, 11(8), 1806. https://doi.org/10.3390/nu11081806

El Sheikha, A. F. & Hu, D. M. (2020). Molecular techniques reveal more secrets of fermented foods. Critical Reviews in Food Science and Nutrition, 60(1), 11-32. https://doi.org/10.1080/10408398.2018.1506906

El-Gendy, S. M. (1983). Fermented foods of Egypt and the Middle East. Journal of Food Protection, 46(4), 358-367. https://doi.org/10.4315/0362-028X-46.4.358

Feng, R., Chen, L. & Chen, K. P. (2018). Fermentation trip: Amazing microbes, amazing metabolisms. Annals of Microbiology, 68(11), 717-729. https://doi.org/10.1007/s13213-018-1384-5

Galimberti, A., Bruno, A., Agostinetto, G., Casiraghi, M., Guzzetti, L. & Labra, M. (2021). Fermented food products in the era of globalization: Tradition meets biotechnology innovations. Current Opinion in Biotechnology, 70, 36-41. https://doi.org/10.1016/j.copbio.2020.10.006

Giraffa, G. (2004). Studying the dynamics of microbial populations during food fermentation. FEMS Microbiology Reviews, 28(2), 251-260. https://doi.org/10.1016/j.femsre.2003.10.005

Guan, Y. F., Lv, H. X., Wu, G. F., Chen, J., Wang, M., Zhang, M., Pang, H. L., Duan, Y. K., Wang, L., &

Tan, Z. F. (2023). Effects of lactic acid bacteria reducing the content of harmful fungi and mycotoxins on the quality of mixed fermented feed. Toxins, 15(3), 226. https://doi.org/10.3390/toxins15030226

Hansen, E. B. (2002). Commercial bacterial starter cultures for fermented foods of the future. International Journal of Food Microbiology, 78(1-2), 119-131. https://doi.org/10.1016/S0168-1605(02)00238-6

Hashemi, M., Mousavi, S. M., Razavi, S. H. & Shojaosadati, S. A. (2011). Mathematical modeling of biomass and α-amylase production kinetics by Bacillus sp. in solid-state fermentation based on solid dry weight variation. Biochemical Engineering Journal, 53(2), 159-164. https://doi.org/10.1016/j.bej.2010.09.017

Hashemi, M., Razavi, S. H., Shojaosadati, S. A., Mousavi, S. M., Khajeh, K. & Safari, M. (2010). Development of a solid-state fermentation process for production of an alpha amylase with potentially interesting properties. Journal of Bioscience and Bioengineering, 110(3), 333-337. https://doi.org/10.1016/j.jbiosc.2010.03.005

Hatvan, Z., Varga, L., Székelyhidi, R. & Ásványi, B. (2024). The fermentability of agricultural raw materials by probiotic bacterial strains. BIO Web of Conferences, 125, 03006. https://doi.org/10.1051/bioconf/202412503006

Henriques, T. M., Pereira, S. R., Serafim, L. S. & Xavier, A. M. R. B. (2018). Two-stage aeration fermentation strategy to improve bioethanol production by Scheffersomyces stipitis. Fermentation, 4(4), 97. https://doi.org/10.3390/fermentation4040097

Heres, L. (2004). Campylobacter and Salmonella control in chickens and the role of fermented food. Tijdschrift voor Diergeneeskunde, 129(10), 332-335.

Hussain, M. A. (2018). Molecular techniques for the identification of LAB in fermented cereal and meat products. In El Sheikha, A. F., Levin, R. E. & Xu, J. P. (Eds.), Molecular Techniques in Food Biology: Safety, Biotechnology, Authenticity and Traceability (pp. 261-283). John Wiley & Sons, Chichester, UK. https://doi.org/10.1002/9781119374633.ch11

Jazi, V., Boldaji, F., Dastar, B., Hashemi, S. R. & Ashayerizadeh, A. (2017). Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. British Poultry Science, 58(4), 402-408. https://doi.org/10.1080/00071668.2017.1315051

Jeyaram, K., Singh, T. A., Romi, W., Devi, A. R., Singh, W. M., Dayanidhi, H., Singh, N. R. & Tamang, J. P. (2009). Traditional fermented foods of Manipur. Indian Journal of Traditional Knowledge, 8(1), 115-121.

Jha, R. & Berrocoso, J. F. D. (2016). Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: A review. Animal Feed Science and Technology, 212, 18-26. https://doi.org/10.1016/j.anifeedsci.2015.12.002

Jin, R. T., Song, J., Liu, C., Lin, R., Liang, D., Aweya, J. J., Weng, W. Y., Zhu, L. J., Shang, J. Q., Yang, S. (2024). Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods. Comprehensive Reviews in Food Science and Food Safety, 23(4), e13388. https://doi.org/10.1111/1541-4337.13388

Katu, J. K., Tóth, T. & Varga, L. (2025). Enhancing the nutritional quality of low-grade poultry feed ingredients through fermentation: A review. Agriculture, 15(5), 476. https://doi.org/10.3390/agriculture15050476

Khan, M. I., Shin, J. H. & Kim J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1), 36. https://doi.org/10.1186/s12934-018-0879-x

Lavefve, L., Marasini, D. & Carbonero, F. (2019). Microbial ecology of fermented vegetables and non-alcoholic drinks and current knowledge on their impact on human health. Advances in Food and Nutrition Research, 87, 147-185. https://doi.org/10.1016/bs.afnr.2018.09.001

Lee, S., Ryu, C. H., Back, Y. C., Lee, S. D. & Kim, H. (2023). Effect of fermented concentrate on ruminal fermentation, ruminal and fecal microbiome, and growth performance of beef cattle. Animals, 13(23), 3622. https://doi.org/10.3390/ani13233622

Li, T., Chen, X. B., Chen, J. C., Wu, Q. & Chen, G. Q. (2014). Open and continuous fermentation: Products, conditions and bioprocess economy. Biotechnology Journal, 9(12), 1503-1511. https://doi.org/10.1002/biot.201400084

Li, X. M., Song, C. H., Xiong, L., Chen, X. F., Huang, C., Lin, X. Q., Chen, X. D. & Ma, L. L. (2018). Microbial conversion of wastewater from butanol fermentation to microbial oil and biomass by oleaginous yeasts. Environmental Progress & Sustainable Energy, 37(3), 1220-1226. https://doi.org/10.1002/ep.12780

Liu, H. J., Chen, D. D., Zhang, R. F., Hang, X. N., Li, R. & Shen, Q. R. (2016). Amino acids hydrolyzed from animal carcasses are a good additive for the production of bio-organic fertilizer. Frontiers in Microbiology, 7, 1290. https://doi.org/10.3389/fmicb.2016.01290

Liu, E. H. & Liu, S. Y. (2017). Process optimization and study of biogas fermentation with a mixture of duck manure and straw. Renewable and Sustainable Energy Reviews, 72, 439-444. https://doi.org/10.1016/j.rser.2017.01.045

Liu, L., Wang, J. J., Rosenberg, D., Zhao, H., Lengyel, G. & Nadel, D. (2018). Fermented beverage and food storage in 13,000 y-old stone mortars at Raqefet Cave, Israel: Investigating Natufian ritual feasting. Journal of Archaeological Science: Reports, 21, 783-793. https://doi.org/10.1016/j.jasrep.2018.08.008

Lu, C. C., Liu, M., Shang, W. R., Yuan, Y., Li, M. X., Deng, X. X., Li, H. J. & Yang, K. H. (2020). Knowledge mapping of Angelica sinensis (Oliv.) Diels (Danggui) research: A scientometric study. Frontiers in Pharmacology, 11, 294. https://doi.org/10.3389/fphar.2020.00294

Luo, X. X., Dong, M. S., Liu, J. T., Guo, N. F., Li, J., Shi, Y. & Yang, Y. F. (2024). Fermentation: Improvement of pharmacological effects and applications of botanical drugs. Frontiers in Pharmacology, 15, 1430238. https://doi.org/10.3389/fphar.2024.1430238

Mannaa, M., Han, G., Seo, Y. S. & Park, I. (2021). Evolution of food fermentation processes and the use of multi-omics in deciphering the roles of the microbiota. Foods, 10(11), 2861. https://doi.org/10.3390/foods10112861

Marco, M. L., Heeney, D., Binda, S., Cifelli, C. J., Cotter, P. D., Foligné, B., Gänzle, M., Kort, R., Pasin, G., Pihlanto, A., Smid, E. J. & Hutkins, R. (2017). Health benefits of fermented foods: Microbiota and beyond. Current Opinion in Biotechnology, 44, 94-102. https://doi.org/10.1016/j.copbio.2016.11.010

Marsh, A. J., Hill, C., Ross, R. P. & Cotter, P. D. (2014). Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science & Technology, 38(2), 113-124. https://doi.org/10.1016/j.tifs.2014.05.002

Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J., Aguilar, C. N. & Teixeira, J. A. (2011). Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnology Advances, 29(3), 365-373. https://doi.org/10.1016/j.biotechadv.2011.01.008

McFeeters, R. F. (2004). Fermentation microorganisms and flavor changes in fermented foods. Journal of Food Science, 69(1), FMS35-FMS37. https://doi.org/10.1111/j.1365-2621.2004.tb17876.x

McGovern, P. E., Zhang, J. Z., Tang, J. G., Zhang, Z. Q., Hall, G. R., Moreau, R. A., Nuñez, A., Butrym, E. D., Richards, M. P., Wang, C. S., Cheng, G. S., Zhao, Z. J. & Wang, C. S. (2004). Fermented beverages of pre- and proto-historic China. PNAS, 101(51), 17593-17598. https://doi.org/10.1073/pnas.0407921102

Melini, F., Melini, V., Luziatelli, F., Ficca, A. G. & Ruzzi, M. (2019). Health-promoting components in fermented foods: An up-to-date systematic review. Nutrients, 11(5), 1189. https://doi.org/10.3390/nu11051189

Mengesha, Y., Tebeje, A. & Tilahun, B. (2022). A review on factors influencing the fermentation process of teff (Eragrostis teff) and other cereal-based Ethiopian injera. International Journal of Food Science, 2022, 4419955. https://doi.org/10.1155/2022/4419955

Missotten, J. A. M., Michiels, J., Ovyn, A., De Smet, S. & Dierick, N. A. (2010). Fermented liquid feed for pigs. Archives of Animal Nutrition, 64(6), 437-466. https://doi.org/10.1080/1745039X.2010.512725

Moonga, H. B., Schoustra, S. E., Linnemann, A. R., van den Heuvel, J., Shindano, J. & Smid, E. J. (2021). Influence of fermentation temperature on microbial community composition and physicochemical properties of mabisi, a traditionally fermented milk. LWT, 136(Part 2), 110350. https://doi.org/10.1016/j.lwt.2020.110350

Moraes, P. M., Perin, L. M., Silva Jr., A., Nero, L. A. (2013). Comparison of phenotypic and molecular tests to identify lactic acid bacteria. Brazilian Journal of Microbiology, 44(1), 109-112. https://doi.org/10.1590/S1517-83822013000100015

Naji, S. A. H., Al-Gharawi, J. K. M. & Al-Zamili, I. F. B. (2015). The effect of starting age of feeding wetting fermented feed on the intestinal flora, humoral and cellular immunity of broiler chicks. International Journal of Advanced Research, 3(1), 41-49.

Nasrabadi, M. R. N. & Razavi, S. H. (2010). High levels lycopene accumulation by Dietzia natronolimnaea HS-1 using lycopene cyclase inhibitors in a fed-batch process. Food Science and Biotechnology, 19(4), 899-906. https://doi.org/10.1007/s10068-010-0127-6

Niba, A. T., Beal, J. D., Kudi, A. C. & Brooks, P. H. (2009). Potential of bacterial fermentation as a biosafe method of improving feeds for pigs and poultry. African Journal of Biotechnology, 8(9), 1758-1767.

Rahman, M. (2013). Medical applications of fermentation technology. Advanced Materials Research, 810, 127-157. https://doi.org/10.4028/www.scientific.net/AMR.810.127

Rezac, S., Kok, C. R., Heermann, M. & Hutkins, R. W. (2018). Fermented foods as a dietary source of live organisms. Frontiers in Microbiology, 9, 1785. https://doi.org/10.3389/fmicb.2018.01785

Şanlier, N., Gökcen, B. B. & Sezgin, A. C. (2019). Health benefits of fermented foods. Critical Reviews in Food Science and Nutrition, 59(3), 506-527. https://doi.org/10.1080/10408398.2017.1383355

Schingoethe, D. J. (1976). Whey utilization in animal feeding: A summary and evaluation. Journal of Dairy Science, 59(3), 556-570. https://doi.org/10.3168/jds.S0022-0302(76)84240-3

Sharma, R., Garg, P., Kumar, P., Bhatia, S. K. & Kulshrestha, S. (2020). Microbial fermentation and its role in quality improvement of fermented foods. Fermentation, 6(4), 106. https://doi.org/10.3390/fermentation6040106

Sharma, A. & Kapoor, A. C. (1996). Levels of antinutritional factors in pearl millet as affected by processing treatments and various types of fermentation. Plant Foods for Human Nutrition, 49(3), 241-252. https://doi.org/10.1007/BF01093221

Singhania, R. R., Patel, A. K., Soccol, C. R. & Pandey, A. (2009). Recent advances in solid-state fermentation. Biochemical Engineering Journal, 44(1), 13-18. https://doi.org/10.1016/j.bej.2008.10.019

Soccol, C. R., da Costa, E. S. F., Letti, L. A. J., Karp, S. G., Woiciechowski, A. L. & Vandenberghe, L. P. S. (2017). Recent developments and innovations in solid state fermentation. Biotechnology Research and Innovation, 1(1), 52-71. https://doi.org/10.1016/j.biori.2017.01.002

Subramaniyam, R. & Vimala, R. (2012). Solid state and submerged fermentation for the production of bioactive substances: A comparative study. International Journal of Science and Nature, 3(3), 480-486.

Sun, H. X., Kang, X. Y., Tan, H. Z., Cai, H. Y., Chen, D. (2023). Progress in fermented unconventional feed application in monogastric animal production in China. Fermentation, 9(11), 947. https://doi.org/10.3390/fermentation9110947

Sun, H. X., Jiang, Z. P., Chen, Z. M., Liu, G. H., Liu, Z. X. (2024). Effects of fermented unconventional protein feed on pig production in China. Frontiers in Veterinary Science, 11, 1446233. https://doi.org/10.3389/fvets.2024.1446233

Szakály, S. (2001). Tejgazdaságtan. Dinasztia Kiadó, Budapest.

Szekér, K. (2007). Tejsavbaktériumok és élelmiszer-eredetű romlás- és kórokozó baktériumok versengő kölcsönhatásának vizsgálata [Doktori (PhD) értekezés, Budapesti Corvinus Egyetem]. Budapest.

Tamang, J. P., Cotter, P. D., Endo, A., Han, N. S., Kort, R., Liu, S. Q., Mayo, B., Westerik, N. & Hutkins, R. (2020). Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety, 19(1), 184-217. https://doi.org/10.1111/1541-4337.12520

Tamang, J. P., Shin, D. H., Jung S. J. & Chae, S. W. (2016). Functional properties of microorganisms in fermented foods. Frontiers in Microbiology, 7, 578. https://doi.org/10.3389/fmicb.2016.00578

Tanaka, T. & Kondo, A. (2015). Cell surface engineering of industrial microorganisms for biorefining applications. Biotechnology Advances 33(7), 1407. http://dx.doi.org/10.1016/j.biotechadv.2015.06.002

Tibbetts, S. M., Mann, J. & Dumas, A. (2017). Apparent digestibility of nutrients, energy, essential amino acids and fatty acids of juvenile Atlantic salmon (Salmo salar L.) diets containing whole-cell or cell-ruptured Chlorella vulgaris meals at five dietary inclusion levels. Aquaculture, 481, 25-39. https://doi.org/10.1016/j.aquaculture.2017.08.018

Valentino, V., Magliulo, R., Farsi, D., Cotter, P. D., O’Sullivan, O., Ercolini, D. & De Filippis, F. (2024). Fermented foods, their microbiome and its potential in boosting human health. Microbial Biotechnology, 17(2), e14428. https://doi.org/10.1111/1751-7915.14428

Voidarou, C., Antoniadou, Μ., Rozos, G., Tzora, A., Skoufos, I., Varzakas, T., Lagiou, A. & Bezirtzoglou, E. (2021). Fermentative foods: Microbiology, biochemistry, potential human health benefits and public health issues. Foods, 10(1), 69. https://doi.org/10.3390/foods10010069

Vuppala, G., Krishna R. & Murthy K. (2015). Fermentation in food processing. Journal of Microbiology and Biotechnology, 4(1), 1-9.

Waghmare, P. R., Khandare, R. V., Jeon, B. H. & Govindwar, S. P. (2018). Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production. Biofuel Research Journal, 5(3), 846-853. https://doi.org/10.18331/BRJ2018.5.3.4

Wang, J. & Fung, D. Y. C. (1996). Alkaline-fermented foods: A review with emphasis on pidan fermentation. Critical Reviews in Microbiology, 22(2), 101-138. https://doi.org/10.3109/10408419609106457

Xiang, H., Sun-Waterhouse, D. X., Waterhouse, G. I. N., Cui, C. & Ruan, Z. (2019). Fermentation-enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8(3), 203-243. https://doi.org/10.1016/j.fshw.2019.08.003

Xu, B. C., Li, Z., Wang, C., Fu, J., Zhang, Y., Wang, Y. Z. & Lu, Z. Q. (2020). Effects of fermented feed supplementation on pig growth performance: A meta-analysis. Animal Feed Science and Technology, 259, 114315. https://doi.org/10.1016/j.anifeedsci.2019.114315

Xu, F. Z., Zeng, X. G. & Ding, X. L. (2012). Effects of replacing soybean meal with fermented rapeseed meal on performance, serum biochemical variables and intestinal morphology of broilers. Asian-Australasian Journal of Animal Sciences, 25(12), 1734-1741. https://doi.org/10.5713/ajas.2012.12249

Yamanè, T., Shimizu, S. (1984). Fed-batch techniques in microbial processes. In Bioprocess Parameter Control. Advances in Biochemical Engineering/Biotechnology, 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0006382

Yazid, N. A., Barrena, R., Komilis, D. & Sánchez, A. (2017). Solid-state fermentation as a novel paradigm for organic waste valorization: A review. Sustainability, 9(2), 224. https://doi.org/10.3390/su9020224

Zhang, A. R., Yang, Y. Y., Li, Y., Zheng, Y. F., Wang, H. M., Cui, H. X., Yin, W., Lv, M., Liang, Y. X., Chen, W. L. (2024). Effects of wheat-based fermented liquid feed on growth performance, nutrient digestibility, gut microbiota, intestinal morphology, and barrier function in grower-finisher pigs. Journal of Animal Science, 102, skae229. https://doi.org/10.1093/jas/skae229

Downloads

Megjelent

2025-06-27

Hogyan kell idézni

Hatvan, Z., Jim Kioko, K., Pintér, G., Varga, L., & Ásványi, B. (2025). Ipari fermentációs lehetőségek az élelmiszerek és a sertéstakarmányok előállításában: Irodalmi áttekintés. Acta Agronomica Óváriensis, 66(1), 69–88. https://doi.org/10.17108/ActAgrOvar.2025.66.1.69

Folyóirat szám

Rovat

Összefoglaló tanulmány