Az Európai Unióban engedélyezett rovarfajok elemzése: szakirodalmi áttekintés
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.2.118Kulcsszavak:
engedélyezett rovarfajok, fenntartható fehérjeforrás, körforgásos gazdálkodás, tápérték, ipari hasznosíthatóságAbsztrakt
A globális fehérjeválság és a fenntartható élelmiszertermelés iránti igény felgyorsította az alternatív fehérjeforrások, köztük az ehető rovarok kutatását. Az Európai Unió (EU) 2015/2283-as Novel Food-rendelete és az EFSA kockázatértékelései alapján jelenleg kilenc rovarfaj – Tenebrio molitor, Alphitobius diaperinus, Acheta domesticus, Gryllus assimilis, Gryllodes sigillatus, Locusta migratoria, Hermetia illucens, Bombyx mori és Musca domestica – engedélyezett emberi fogyasztásra vagy takarmányozási célra. A tanulmány célja a biológiai, táplálkozási és környezeti jellemzők szintézise, valamint a rovarfehérje-ipar szerepének értékelése a körforgásos gazdálkodásban. A módszertan PRISMA-alapú szakirodalmi áttekintésre épült, amely a 2015-2025 közötti Q1-Q2 folyóiratokat, EFSA-dokumentumokat és LCA-adatokat elemezte. Az eredmények szerint a vizsgált fajok fehérjetartalma 40-70 %, zsírtartalma 15-35 % között változik, míg aminosav-profiljuk és zsírsav-összetételük a hagyományos állati fehérjeforrásokkal egyenértékű. Az LCA-elemzések alapján a rovarfehérje-előállítás üvegházhatásúgáz-kibocsátása akár 80-90 %-kal alacsonyabb a marha- vagy sertéshúsénál. A kutatás rávilágít arra, hogy a rovarfajok biológiai diverzitása, ipari adaptálhatósága és környezeti előnyei jelentős szerepet játszhatnak a jövő fenntartható élelmiszer- és takarmányrendszereinek kialakításában.
Hivatkozások
Barragán-Fonseca, K. Y., Barragán-Fonseca, K. B., Verschoor, G., van Loon, J. J., & Dicke, M. (2020). Insects for peace. Current Opinion in Insect Science, 40, 85-93.
Cermeno, M., Bascón, C., Amigo-Benavent, M., Felix, M., & FitzGerald, R. J. (2022). Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. Journal of Functional Foods, 92, 105052. https://doi.org/10.1016/j.jff.2022.105052
Chapman, R. F. (2013). The insects: structure and function (5th ed.) Cambridge University Press.
Čičková, H., Newton, G. L., Lacy, R. C., & Kozánek, M. (2015). The use of fly larvae for organic waste treatment. Waste management, 35, 68-80. https://doi.org/10.1016/j.wasman.2014.09.026
Dreyer, M., Hörtenhuber, S., Zollitsch, W., Jäger, H., Schaden, L. M., Gronauer, A., & Kral, I. (2021). Environmental life cycle assessment of yellow mealworm (Tenebrio molitor) production for human consumption in Austria–a comparison of mealworm and broiler as protein source. The International Journal of Life Cycle Assessment, 26(11), 2232-2247. https://doi.org/10.1007/s11367-021-01980-4
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck, D., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., Kearney, J., ... & Knutsen, H. K. (2021). Safety of frozen and dried formulations from migratory locust (Locusta migratoria) as a Novel food pursuant to Regulation (EU) 2015/2283. Efsa Journal, 19(7), e06667. https://doi.org/10.2903/j.efsa.2021.6667
EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA), Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., ... & Knutsen, H. K. (2021). Safety of frozen and dried formulations from whole house crickets (Acheta domesticus) as a Novel food pursuant to Regulation (EU) 2015/2283. Efsa Journal, 19(8), e06779. https://doi.org/10.2903/j.efsa.2021.6779
Gkinali, A. A., Matsakidou, A., Vasileiou, E., & Paraskevopoulou, A. (2022). Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends in Food Science & Technology, 119, 495-507. https://doi.org/10.1016/j.tifs.2021.11.024
Gold, M., Tomberlin, J. K., Diener, S., Zurbrügg, C., & Mathys, A. (2018). Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Management, 82, 302-318. https://doi.org/10.1016/j.wasman.2018.10.022
Gullan, P. J., & Cranston, P. S. (2021). The insects: An outline of entomology (6th ed.). Wiley-Blackwell.
Halloran, A., Ayieko, M., Oloo, J., Konyole, S. O., Alemu, M. H., & Roos, N. (2021). What determines farmers’ awareness and interest in adopting cricket farming? A pilot study from Kenya. International Journal of Tropical Insect Science, 41(3), 2149-2164. https://doi.org/10.1007/s42690-020-00333-2
Hamani, B., Moula, N., Taffa, A. G., Leyo, I. H., Mahamadou, C., Detilleux, J., & Van, Q. C. D. (2022). Effect of housefly (Musca domestica) larvae on the growth performance and carcass characteristics of local chickens in Niger. Veterinary World, 15(7), 1738. https://doi.org/10.14202/vetworld.2022.1738-1748
Lenaerts, S., Van Der Borght, M., Callens, A., & Van Campenhout, L. (2018). Suitability of microwave drying for mealworms (Tenebrio molitor) as alternative to freeze drying: Impact on nutritional quality and colour. Food chemistry, 254, 129-136. https://doi.org/10.1016/j.foodchem.2018.02.006
Magara, H. J., Niassy, S., Ayieko, M. A., Mukundamago, M., Egonyu, J. P., Tanga, C. M., ... & Ekesi, S. (2021). Edible crickets (Orthoptera) around the world: distribution, nutritional value, and other benefits—a review. Frontiers in nutrition, 7, 537915. https://doi.org/10.3389/fnut.2020.537915
Magara, H. J., Hugel, S., & Fisher, B. L. (2025). Growth Performance and Nutritional Content of Tropical House Cricket (Gryllodes sigillatus (Walker, 1969)) Reared on Diets Formulated from Weeds and Agro By-Products. Insects, 16(6), 600. https://doi.org/10.3390/insects16060600
Makkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
Marzoli, F., Antonelli, P., Saviane, A., Tassoni, L., Cappellozza, S., & Belluco, S. (2022). Bombyx mori from a food safety perspective: a systematic review. Food Research International, 160, 111679. https://doi.org/10.1016/j.foodres.2022.111679
Meneguz, M., Schiavone, A., Gai, F., Dama, A., Lussiana, C., Renna, M., & Gasco, L. (2018). Effect of rearing substrate on growth performance and chemical composition of Hermetia illucens larvae. Journal of the Science of Food and Agriculture, 98(15), 5776-5784. https://doi.org/10.1002/jsfa.9127
Menozzi, D., Sogari, G., Mora, C., Gariglio, M., Gasco, L., & Schiavone, A. (2021). Insects as feed for farmed poultry: are Italian consumers ready to embrace this innovation? Insects, 12(5), 435. https://doi.org/10.3390/insects12050435
Mierzejewska, S., Domiszewski, Z., Piepiórka-Stepuk, J., Bielicka, A., Szpicer, A., & Wojtasik-Kalinowska, I. (2025). Analysis of the Impact of the Addition of Alphitobius diaperinus Larval Powder on the Physicochemical, Textural, and Sensorial Properties of Shortbread Cookies. Applied Sciences, 15(8), 4269. https://doi.org/10.3390/app15084269
Nijhout, H. F. (2003). Development and evolution of adaptive polyphenisms. Evolution & development, 5(1), 9-18. https://doi.org/10.1046/j.1525-142X.2003.03003.x
Numata, K., & Kaplan, D. L. (2025). Silk proteins: designs from nature with multipurpose utility and infinite future possibilities. Advanced Materials, 37(22), 2411256. https://doi.org/10.1002/adma.202411256
Ochiai, M., Tezuka, K., Yoshida, H., Akazawa, T., Komiya, Y., Ogasawara, H., ... & Nakada, M. (2022). Edible insect Locusta migratoria shows intestinal protein digestibility and improves plasma and hepatic lipid metabolism in male rats. Food Chemistry, 396, 133701. https://doi.org/10.1016/j.foodchem.2022.133701
Oonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental impact of the production of mealworms as a protein source for humans – A life cycle assessment. PLoS ONE, 7(12), e51145. https://doi.org/10.1371/journal.pone.0051145
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71
Payne, C. L. R., Scarborough, P., Rayner, M., & Nonaka, K. (2016). Are edible insects more or less ‘healthy’than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over-and undernutrition. European journal of clinical nutrition, 70(3), 285-291. https://doi.org/10.1038/ejcn.2015.149
Penedo, A. O., Bucher Della Torre, S., Götze, F., Brunner, T. A., & Brück, W. M. (2022). The consumption of insects in Switzerland: university-based perspectives of entomophagy. Foods, 11(18), 2771.https://doi.org/10.3390/foods11182771
Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2020). Larvae mediated valorization of industrial, agriculture and food wastes: Biorefinery concept through bioconversion, processes, procedures, and products. Processes, 8(7), 857. https://doi.org/10.3390/pr8070857
Ribeiro, G. H. M., Guimarães, V. H. D., da Silva Teixeira, H. A., Farias, L. C., Guimarães, A. L. S., de Paula, A. M. B., & Santos, S. H. S. (2024). Dietary supplementation with black cricket (Gryllus assimilis) reverses protein-energy malnutrition and modulates renin-angiotensin system expression in adipose tissue. Food Research International, 189, 114570. https://doi.org/10.1016/j.foodres.2024.114570
Rumpold, B. A.-Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science & Emerging Technologies, 17, 1-11. https://doi.org/10.1016/j.ifset.2012.11.005
Spartano, S., & Grasso, S. (2021). UK consumers’ willingness to try and pay for eggs from insect-fed hens. Future Foods, 3, 100026. https://doi.org/10.1016/j.fufo.2021.100026
Spranghers, T., Ottoboni, M., Klootwijk, C., Ovyn, A., Deboosere, S., De Meulenaer, B., & De Smet, S. (2017). Nutritional composition of black soldier fly (Hermetia illucens) prepupae reared on different organic waste substrates. Journal of the Science of Food and Agriculture, 97(8), 2594-2600. https://doi.org/10.1002/jsfa.8081
Summart, R., Imsoonthornruksa, S., Yongsawatdigul, J., Ketudat-Cairns, M., & Udomsil, N. (2024). Characterization and molecular docking of tetrapeptides with cellular antioxidant and ACE inhibitory properties from cricket (Acheta domesticus) protein hydrolysate. Heliyon, 10(15), e35156. https://doi.org/10.1016/j.heliyon.2024.e35156
Truman, J. W., & Riddiford, L. M. (2019). The evolution of insect metamorphosis: a developmental and endocrine view. Philosophical Transactions of the Royal Society B, 374(1783), 20190070. https://doi.org/10.1098/rstb.2019.0070
Vandeweyer, D., De Smet, J., Van Looveren, N., & Van Campenhout, L. (2021). Biological contaminants in insects as food and feed. Journal of Insects as Food and Feed, 7(5), 807-822. https://doi.org/10.3920/JIFF2020.0060
Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual review of entomology, 58(1), 563-583. https://doi.org/10.1146/annurev-ento-120811-153704
Van Huis, A., & Tomberlin, J. K. (2016). Insects as food and feed: from production to consumption. Wageningen Academic Publishers.
Veldkamp, T., van Duinkerken, G., & van Huis, A., … & van Boekel M. A. J. S. (2012). Insects as a sustainable feed ingredient in pig and poultry diets - a feasibility study. Report 638. Wageningen UR Livestock Research.
Wilkinson, K., Muhlhausler, B., Motley, C., Crump, A., Bray, H., & Ankeny, R. (2018). Australian consumers’ awareness and acceptance of insects as food. Insects, 9(2), 44. https://doi.org/10.3390/insects9020044
Downloads
Megjelent
Hogyan kell idézni
Folyóirat szám
Rovat
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
