Modelling Transpiration of Grapevine Varieties in a Potted Trial

Authors

DOI:

https://doi.org/10.17108/ActAgrOvar.2024.65.1.1

Keywords:

water deficiency, transpiration, model experiment, water demand of grape varieties

Abstract

Plants try to maintain their water content by stomatal regulation in water deficiency. In order to evaluate the dehydration responses between different grape genotypes in a controlled way, at the end of the 60s of the last century, researchers of the Viticulture and Wine Research Institute, the Agrometeorological Observatory and the Central Institute of Atmospheric Physics modelled the transpiration rate of some grape varieties in a greenhouse experiment. The water demand of the grape varieties was based on the amount of water released per 1 cm2 of leaf surface. This was then a current topic, because the traditional small-scale head cultivation was replaced by a mechanized method of high cultivation with wide row spacing. The larger vine size and the higher crop volume increased the vine's water demand. In the months of July-September 2017, we repeated the model experiment with 11 grapevine varieties in the greenhouse of the Department of Horticulture and Rural Development of John von Neumann University. With this, we partly paid tribute to the memory of the designer, József Füri, and on the other hand, we wanted to examine autochthonous-, world-, and intermediate (intra- and interspecific) varieties instead of the now obsolete table grape varieties they examined. For three months, we measured the transpiration per 1 cm2 of the leaves of the grape varieties on a weekly basis. Based on the results, we concluded that some of the varieties are ‘water wasting’ (Rhine Riesling, Irsai Olivér, Sauvignon blanc), others are 'water-saving' (Cserszegi fűszeres, Kadarka, Kövidinka), the transpiration of some varieties falls between the two categories (Kékfrankos, Generosa, Cabernet sauvignon).

References

Barrios-Masias, F.H., Knipfer, T., & McElrone, A.J. (2015). Differential responses of grapevine rootstocks to water stress are associated with adjustments in fine root hydraulic physiology and suberization. Journal of Experimental Botany, 66(19), 6069-6078. https://doi.org/10.1093/jxb/erv324

Blum, A. (1996). Crop responses to drought and the interpretation of adaptation. Plant Growth Regulation, 20(2), 135-148. https://doi.org/10.1007/BF00024010

Bota, J., Flexas, J., & Medrano, H. (2001). Genetic variability of photosynthesis and water use in Balearic grapevine cultivars. Annals of Applied Biology, 138(3), 353-361. https://doi.org/10.1111/j.1744-7348.2001.tb00120.x

Boyer, J.S., Wong, S.C, & Farquhar, G.D. (1997). CO2 and water vapor exchange across leaf cuticle (epidermis) at various water potentials. Plant Physiology, 114(1), 185-191. https://doi.org/10.1104/pp.114.1.185

Bowen, P.A., Bogdanoff, C.R., & Estergaard, B. (2004). Impacts of using polyethylene sleeves and wave length-selective mulch in vineyards. I. Effects on air and soil temperatures and degree day accumulation. Canadian Journal of Plant Science, 84(2), 545-553. https://doi.org/10.4141/P03-093

Chaves, M.M., Zarrouk, O., & Francisco, R. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661-676. https://doi.org/10.1093/aob/mcq030

Copper, A.W., Koundouras, S., Bastian, S.E.P., Johnson, T., & Collins, C. (2022). Assessing the response of Vitis vinifera L. cv. Xynisteri to different irrigation regimes and its comparison to cvs. Maratheftiko, Shiraz and Sauvignon Blanc. Agronomy, 12(3), 634. https://doi.org/10.3390/agronomy12030634

Csepregi, P. & Zilai, J. (1988). Szőlőfajta ismeret és használat. Budapest, Magyarország: Mezőgazdasági Kiadó, ISBN 963-232-663-6

Flexas, J., Escalona, J.M., & Medrano, H. (1998). Down-regulation of photosynthesis by drought under field conditions in grapevine leaves. Australian Journal of Plant Physiology, 25(8), 893-900. https://doi.org/10.1071/PP98054

Fraga, H., Garcia, de C.A.I., Melheiro, A.C., & Santos, J.A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 22(11), 3774-3788. https://doi.org/10.1111/gcb.13382

Füri, J., Kozma, F. (1975). A szőlő öntözésének és vízháztartásának vizsgálata. Légkör 20(4), 95-98. ISSN 0133-3666

Hajdu, E. (2003). Magyar szőlőfajták. Budapest, Magyarország: Mezőgazda Kiadó, ISBN 963-286-017-9

Hajdu, E. (2020). A borszőlőnemesítés Magyarországon. Kertgazdaság, 52(1), 44-56. ISBN/ISSN 1419-2713

Hepner, Y., Bravdo, B., Loinger, C., Cohen, S., & Tabacman, H. (1985). Effect of drip irrigation schedules on growth, yield, must composition and wine quality of Cabernet Sauvignon. American Journal of Enology and Viticulture 36(1), 77-85.

Hoffmann, M., Hoppmann, D., & Hannes, R.S. (2007). Einfluss der Klimaveränderung auf die phänologische Entwicklung der Rebesowie die Säurestruktur der Trauben. FA Geisenheim, DDW Geisenheim. ImageJ Basics. Retrieved from https://imagej.net/ij/docs/pdfs/ImageJ.pdf

Jones, H.G. (2007). Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany, 58(2), 119-130. http://doi.org/10.1093/jxb/erl118

Kovács, E., Puskás, J., Hajdu, E., & Kozma, K. (2020). Egyes borszőlőfajták válaszadása az éghajlatváltozásra a Soproni és a Zalai borvidéken. Kertgazdaság 52(1), 31-43. ISBN/ISSN 1419-2713

Lamarque, L., Chloé, E., Charrier, G., Burlett, R., Dell’Acqua, N., Pouzoulet, J., Gambetta, G., & Delzon, S. (2023). Quantifying the grapevine xylem embolism resistance spectrum to identify varieties and regions at risk in a future dry climate. Scientific Reports, 13(1), 7724. https://doi.org/10.1038/s41598-023-34224-6

Laget, F., Tondut, J.L., Deloire, A., & Kelly, M.T. (2008). Climate trends in a specific Mediterranean viticultural area between 1950 and 2006. Journal International des Sciences de la Vigne et du Vin, 42(3), 113-123. https://doi.org/10.20870/oeno-one.2008.42.3.817

Levin, A.D. (2019). Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.). Agricultural Water Management, 221, 422-429. https://doi.org/10.1016/j.agwat.2019.03.026

Lovisolo, C., Perrone, I., & Carra, A. (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Functional Plant Biology, 37(2), 98-116. Retrieved from https://www.publish.csiro.au/fp/FP09191

Matthews, M.A., Anderson, M.M. (1988). Fruit ripening in Vitis vinifera L.: responses to seasonal water deficit. American Journal of Viticulture and Enology, 39(4), 313-320. http://doi.org/10.5344/ajev.1988.39.4.313

Mozell, M.R., Thach, L. (2014). The impact of climate change on the global wine industry: Challanges & solutions. Wine Economics and Policy, 3(2), 81-89. https://doi.org/10.1016/j.wep.2014.08.001

Pálfai, I. (1993): Összefoglaló tanulmány a Duna-Tisza közi talajvízszintsüllyedés okairól és a vízhiányos helyzet javításának lehetőségeiről. In: A Duna-Tisza közi hátság vízgazdálkodási problémái 3, 111-126. ISSN 0133-3666

Pantin, F., Monnet, F., Jannaud, D., Costa J.M., Renaud J., Muller B., Simonneau T., & Genty B. (2013). The dual effect of abscisic acid on stomata. New Phytology, 197(1), 65-72. http://doi.org/10.1111/nph.12013

Scholander, P.F., Bradstreet, E.D., Hemmingsen, E., & Hammel, H. (1965). Sap Pressure in Vascular Plants; Negative Hydrostatic Pressure Can Be Measured in Plants. Science, 148(3668), 339-346. http://doi.org/10.1126/science.148.3668.339

Schultz, H.R. (1996). Water relations and photosynthetic responses of two grapevine cultivars of different geographical origin during water stress. Acta Horticulturae, 427, 251-266. https://doi.org/10.17660/ActaHortic.1996.427.30

Schultz, H.R. (2000). Climate change and viticulture: A European perspective on climatology, carbon dioxide and UV-B effects. Australian Journal of Grape and Wine Research, 6(1), https://doi.org/10.1111/j.1755-0238.2000.tb00156.x

Soar, C.J., Speirs, J., Maffei, S.M., Penrose, A.B., McCarthy, M.G., & Loveys, B.R. (2006). Grape vine varieties Shiraz and Grenache differ in their stomatal response to VPD: apparent links with ABA physiology and gene expression in leaf tissue. Australian Journal of Grape Wine Research, 12(1), 2-12. https://doi.org/10.1111/j.1755-0238.2006.tb00038.x

Taiz, L. & Zeiger, E. (2003). Plant Physiology, 3rd edn. Annals of Botany, Publ. Sinauer Assiciaters 91(6), 750, https://doi.org/10.1093/aob/mcg079

Tardieu, F., Simonneau, T. (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany, 49, 419-432. https://doi.org/10.1093/jxb/49.Special_Issue.419

Teszlák, P., Gaál, K., Kocsis, M., & Csikasz-Krizsics, A. (2014). Characterization of grapevine (Vitis vinifera L.) varieties based on drought induced acclimation mechanism. Mitteilungen Klosterneuburg, 64(4), 148-155. ISSN 0007-5922

Tognetti, R., Raschi A., & Jones, M.B. (2000). Seasonal patterns of tissue water relations in three Mediterranean shrubs co-occurring at a natural CO2 spring. Plant Cell Environment, 23(12), 1341-1351. https://doi.org/10.1046/j.1365-3040.2000.00645.x

Williams, L.E., Grimes, D.W. (1987). Modelling vine growth-development of a data set for a water balance subroutine. In: Proceedings of the 6th Australian Wine Industrial and Technical Conference, Adelaide, Australia, 14-17. July 1986, (ed. Lee T), 1019-55, ISBN 0958780307

Zsófi, Zs., Tóth, E., Rusjan, D., & Bálo, B. (2011). Terroir aspects of grape quality in a cool climatewine region: relationship between water deficit, vegetative growth and berry sugar concentration. Scientia Horticulturae, 127(4), 494-499. https://doi.org/10.1016/j.scienta.2010.11.014

Downloads

Published

2024-07-12

How to Cite

Baglyas, F., & Hajdu, E. (2024). Modelling Transpiration of Grapevine Varieties in a Potted Trial. Acta Agronomica Óváriensis, 65(1), 1–24. https://doi.org/10.17108/ActAgrOvar.2024.65.1.1

Issue

Section

Kísérletes tanulmányok