Analysis of Body Measurements of Limousin Weaned Calves Using a Decision Tree Method in a Hungarian Nucleus Farm

Authors

  • Márton Demény Limousin and Blonde d'Aquitaine Breeders Association, Budapest
  • Bence Tarr Hungarian University of Agriculture and Life Sciences, Szent Istvan Campus, Institute of Technology https://orcid.org/0009-0004-1790-9234
  • Márton Szűcs Limousin and Blonde d'Aquitaine Breeders Association, Budapest
  • János Tőzsér Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Department of Animal Sciences, Mosonmagyaróvár https://orcid.org/0000-0002-5632-1765

DOI:

https://doi.org/10.17108/ActAgrOvar.2024.65.2.57

Keywords:

Body parameters, weaning weight, Limousin, CHAID, decision tree

Abstract

Body measurement analysis is important for both live weight estimation and breeding animal selection and grading. Any method that helps early selection of breeding animals is not only an effective tool in genetic improvement, but also a cost saving, either. In the present study, the body measurements of a total of 311 calves (146 bulls and 165 heifers) selected from a Limousin nucleus farm (between 2021 and 2022 years) were analysed using a decision tree method. It has been found that the correlation coefficient values between the age and body measurements varied from rrank = 0.02 to rrank = 0.36 (n=311, P≤0.01). At the same time, in relation to live weight, the same values were obtained: rrank = 0.32; rrank = 0.77 (n=311, P≤0.01). We can conclude that at this age period of the weaned calves, that the live weight of the calves had a greater influence on their evaluated body measurements than that of their age. Moreover, it also can be concluded that the CHAID analysis is suitable for exploring the relationship between the body measurement and live weight, with its particular advantage by the displaying the characteristics of homogeneous groups.

References

Abreu, B. A., Magalhães, C. J., Duayer, E., Machado, S. H. M., & da Silva, D. A. (2015). Variação da medida torácica obtida com a fita métrica tradicional com fator de correção e com a fita de pesagem para bovinos. Acta Biomédica Brasiliensia, 6(2), 42-48. https://doi.org/10.18571/acbm.084

Akşahan, R., & Keskin, İ. (2015). Determination of some body measurements affecting fattening final live weight of cattle by the regression tree analysis. Selçuk Tarım Bilimleri Dergisi, 2(1), 53-59.

Augspurger, N. R., & Ellis, M. (2002). Weighing affects short-term feeding patterns of growing-finishing pigs. Canadian Journal of Animal Science, 82(3), 445–448. https://doi.org/10.4141/A01-046

Boiligon, A. A., Vicente, I. S., Vaz, R. Z., Campos, G. S., Souza, F. R. P., Carvalheiro, R., & Albuquerque, L. G. (2016). Principal component analysis of breeding values for growth and reproductive traits and genetic association with adult size in beef cattle. Journal of Animal Science, 94(12), 5014-5022. https://doi.org/10.2527/jas.2016-0737

Bonifazi, R., Calus, M. P. L., ten Napel, J., Veerkamp, R. F., Michenet, A., Savoia, S., Cromie, A., & Vandenplas, J. (2022). International single-step SNPBLUP beef cattle evaluations for Limousin weaning weight. Genetics Selection Evolution, 54(1), 2-18. https://doi.org/10.1186/s12711-022-00748-0

Brown, W. L., & Shrode, R. R. (1971). Body measurements of beef calves and traits of their dams to predict calf performance and body composition as indicated by fat thickness and condition score. Journal of Animal Science, 33(1), 7-12. https://doi.org/10.2527/JAS1971.3317

Castano, D. P., Sardinha, L. A., Maiorano, A. M., Venturini, G. C., Nogueira, C. S., Ospina, A. M. T., & Silva, J. A. V. (2016). Principal components analysis for productive and reproductive traits of Holstein cattle. Paper presented at the Proceedings of International Meeting of Advances in Animal Science. 45139.

Gagaoua, M., Monteils, V., & Picard, B. (2019). Decision tree, a learning tool for the prediction of beef tenderness using rearing factors and carcass characteristics. Journal of the Science of Food and Agriculture, 99(3), 1275-1283. https://doi.org/10.1002/jsfa.9301

Grzesiak, W., Zaborski, D., Pilarczyk, R., Wójcik, J., & Adamczyk, K. (2023). Classification of daily body weight gains in beef calves using decision trees, artificial neural networks, and logistic regression. Animals, 13(12), 1956. https://doi.org/10.3390/ani13121956

Gunawan, A., & Jakaria. (2010). Application of linear body measurements for predicting weaning and yearling weight of Bali cattle. Animal Production, 12(3), 163-168.

Kongsro, J. (2014). Estimation of pig weight using a Microsoft Kinect prototype imaging system. Computerization and Electronics in Agriculture, 109, 32-35. https://doi.org/10.1016/j.compag.2014.08.008

Lewis, J., Abas, Z., Dabousis, C., Lykidis, D., Paschou, P., & Drineas, P. (2011). Tracing cattle breeds with principal components analysis ancestry informative SNPs. PLOS ONE, 6(4), https://doi.org/10.1371/journal.pone.0018007

Li, J., Li, Q., Ma, W., Xue, X., Zhao, C., Tulpan, D., & Yang, S. X. (2022). Key Region Extraction and Body Dimension Measurement of Beef Cattle Using 3D Point Clouds. Agriculture, 12, 1012. https://doi.org/10.3390/agriculture12071012

Marle-Köster, E., Mostert, B. E., & Westhuizen, J. (2000). Body measurements as selection criteria for growth in South African Hereford cattle. Arch. Tierz. Dummenstorf, https://doi.org/10.5194/aab-43-5-2000

Mello, R. R. C., Sinedino, L. Del-Penho, Ferreira, J. E., Sousa, S. L. G., & Mello, M. R. B. (2019). Principal component and cluster analyses of production and fertility traits in Red Sindhi dairy cattle breed in Brazil. Tropical Animal Health and Production, 52, 273–281. https://doi.org/10.1007/s11250-019-02009-7

Miekley, B., Traulsen, I., & Krieter, J. (2013). Principal component analysis for the early detection of mastitis and lameness in dairy cows. Journal of Dairy Research, 80(3), 335–343. https://doi.org/10.1017/S0022029913000290

Moravčíková, N., Kukučková, V., Mészáros, M., Sölkner, J., & Kadlečík, O. (2017). Assessing footprints of natural selection through PCA analysis in cattle. Acta Fytotechnica et Zootechnica, 20(01), 23-27. https://doi.org/10.15414/afz.2017.20.01.23-27

Orheruata, A. M., & Olutogun, O. (1994). Pre- and post-weaning phenotypic relationships between some N’Dama cattle linear measurements in the tropics. Nigerian Journal of Animal Production, 21. https://doi.org/10.51791/njap.v21i1.1142

Ouédraogo, D., Soudré, A., Ouédraogo-Koné, S., Zoma, B. L., Yougbaré, B., Khayatzadeh, N., Mwai, O. A., Wursinger, M., & Sölkner, J. (2020). Breeding objectives and practices in three local cattle breed production systems in Burkina Faso with implication for the design of breeding programs. Livestock Science, 232, 103910. https://doi.org/10.1016/j.livsci.2019.103910

Petherick, J. C., Doogan, V. J., Venus, B. K., & Holroyd, R. G. (2009). Quality of handling and holding yard environment, and beef cattle temperament: 2. Consequences for stress and productivity. Applied Animal Behaviour Science, 120, 28-38. https://doi.org/10.1016/j.applanim.2009.05.009

Piwczyński, D., Nogalski, Z., & Sitkowska, B. (2013). Statistical modeling of calving ease and stillbirths in dairy cattle using the classification tree technique. Livestock Science, 154, 19-27. https://doi.org/10.1016/j.livsci.2013.02.013

Rashid, M. M., Hoque, M. A., Huque, K. S., & Bhuiyan, A. K. F. H. (2016). Prediction of live weight for Brahman crossbred cattle using linear body measurements in rural areas. Advances in Animal and Veterinary Sciences, 4(2), 99-106. https://doi.org/10.14737/journal.aavs/2016/4.2.99.106

Sakar, Ç. M., Ünal, İ., Okuroğlu, A., & Coşkun, M. İ. (2020). Prediction of live weight from chest girth from birth to 12 months of age in Yerli Kara cattle. Black Sea Journal of Agriculture, 3(3), 200-204.

Sales, M. F. L., Paulino, M. F., Valadares Filho, S. C., Paulino, P. V. R., Porto, M. O., & Couto, V. R. M. (2009). Composição corporal e requisitos energéticos de bovinos de corte sob suplementação em pastejo. Revista Brasileira de Zootecnia, 38, 1355–1362. https://doi.org/10.1590/S1516-35982009000700027

Sharma, R., Chaudhary, J. K., Hada, R., Gaur, P., Sharma, S., Singh, N. S., & Tolenkhomba, T. C. (2024). Decision tree for 305-day milk yield in cross-bred cattle. Asian Journal of Agricultural Extension, Economics & Sociology, 42(1), 107-113. https://doi.org/10.9734/ajaees/2024/v42i12353

Shi, C., Teng, G., & Li, Z. (2016). An approach of pig weight estimation using binocular stereo system based on LabVIEW. Computerization and Electronics in Agriculture, 129, 37–43. https://doi.org/10.1016/j.compag.2016.08.012

Tőzsér, J., Nagy, A., Gerszi, K., Mézes, M., Domokos, Z., Kertész, I., & Fekete, T. (1995). A herekörméret, a mellkasszélesség és mélység, valamint az élősúly fenotípusos összefüggésének változása az életkor függvényében charolais fajtájú tenyészbika-jelölteknél. Állattenyésztés és Takarmányozás, 44(3), 203–210.

Tőzsér, J., Balika, S., Bedő, S., Kovács, A., Gábrielné Tőzsér, Gy., & Mihályfi, I. (1997). Limousin tenyészbika-jelöltek sajátteljesítmény vizsgálati eredményeinek értékelése főfaktoranalízissel. Állattenyésztés és Takarmányozás, 46(6), 493-498.

Tőzsér, J., Hidas, A., Holló, I., Holló, G., Szűcs, E., & Bölcskey, K. (2001). Estimation of lean meat content in carcasses of cow by half carcass weight, weight of kidney and trimmed fat, and adipocyte diameter. Acta Agronomica Óváriensis, 43(2), 135–142.

Wongsriworaphon, A., Arnonkijpanich, B., & Pathumnakul, S. (2015). An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Computerization and Electronics in Agriculture, 115, 26–33. https://doi.org/10.1016/j.compag.2015.05.004

Xu, L., Luo, H., Zhang, X., Lu, H., Zhang, M., Ge, J., Zhang, T., Yan, M., Tan, X., Huang, X., & Wang, Y. (2022). Factor Analysis of Genetic Parameters for Body Conformation Traits in Dual-Purpose Simmental Cattle. Animals, 12(18), 2433. https://doi.org/10.3390/ani12182433

Zaborski, D., Proskura, W. S., & Grzesiak, W. (2017). Comparison between data mining methods to assess calving difficulty in cattle. Revista Colombiana de Ciencias Pecuarias, 30, 196-208.

Zarnecki, A., Ronningen, K., & Sobu, H. (1985). The principal component analysis of the incidence of diseases in Norwegian Red Cattle. Journal of Animal Breeding and Genetics, 102(1-5), 106-116. https://doi.org/10.1111/j.1439-0388.1985.tb00678.x

Downloads

Published

2024-12-16

How to Cite

Demény, M., Tarr, B., Szűcs, M., & Tőzsér, J. (2024). Analysis of Body Measurements of Limousin Weaned Calves Using a Decision Tree Method in a Hungarian Nucleus Farm. Acta Agronomica Óváriensis, 65(2), 57–75. https://doi.org/10.17108/ActAgrOvar.2024.65.2.57

Issue

Section

Kísérletes tanulmányok