The Effect of Grape Variety on the Micro- and Macroelement Composition of Grape Seeds

Authors

  • Rita Székelyhidi Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Department of Food Science, Mosonmagyaróvár, Hungary https://orcid.org/0000-0002-0119-9870
  • Zsolt Giczi AlbertKázmér Faculty of Agricultural and Food Sciences of Széchenyi István University Department of Water and Environmental Sciences, Mosonmagyaróvár, Hungary https://orcid.org/0000-0002-0313-4130
  • Erika Hanczné Lakatos Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Department of Food Science, Mosonmagyaróvár, Hungary https://orcid.org/0000-0001-5148-6715
  • Viktória Kapcsándi Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Department of Food Science, Mosonmagyaróvár, Hungary https://orcid.org/0000-0003-4161-6015
  • Beatrix Sik Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Department of Food Science, Mosonmagyaróvár, Hungary https://orcid.org/0000-0002-1786-2710

DOI:

https://doi.org/10.17108/ActAgrOvar.2024.65.2.90

Keywords:

by-product, grape seed, minerals, ICP-OES

Abstract

This study aimed to examine the differences between the micro- and macro-element content of the seed of eight different grape varieties, namely ‘Italian Riesling’, ‘Cabernet Franc’, ‘Pinot Noir’, ‘Sauvignon Blanc’, ‘Királyleányka’, ‘Rhine Riesling’, ‘Merlot’, ‘Kékfrankos’. On the basis of the results, there were significant differences between the calcium (Ca), potassium (K), magnesium (Mg), phosphorus (P), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu) and boron (B) content of grape seed varieties. In the case of macroelements, the largest amount of K (Italian Riesling 4239 mg/kg to Cabernet Franc 8646 mg/kg), followed by Ca (Pinot Noir 5435 mg/kg to Királyleányka 7369 mg/kg), P (Sauvignon Blanc 2566 mg/kg to Királyleányka 3470 mg/kg) and finally Mg (Cabernet Franc 1097 mg/kg to Királyleányka 1466 mg/kg) was contained in the seeds of the cultivars studied. Of the microelements, Fe was present in the largest amount (Sauvignon Blanc 23.7 mg/kg to Merlot 59.5 mg/kg) considering the grape varieties. The amounts of the other microelements tested were as follows: Mn from 13.1 mg/kg (Pinot Noir) to 31.3 mg/kg (Királyleányka), Cu from 9.38 mg/kg (Italian Riesling) to 19.1 mg/kg (Cabernet Franc), Zn from 10.9 mg/kg (Kékfrankos) to 16.2 mg/kg (Királyleányka) and B from 9.46 mg/kg (Italian Riesling) to 9.46 mg/kg (Rhine Riesling). Based on the results, the type of grape affects the micro- and macro-elements content of the seed, and the daily consumption of 100g of grape seed meal can significantly contribute to the daily intake of trace elements.

References

Abbaspour, N., Hurrell, R., & Kelishadi, R. (2014). Review on iron and its importance for human health. Journal of Research in Medical Science, 19(2), 164-174.

Ahn, H. J., & Son, H. S. (2012). Physicochemical properties of different grape varieties cultivated in Korea. Korean Journal of Food Science and Technology, 44, 280-286. https://doi.org/10.9721/KJFST.2012.44.3.280

Al Alawi, A. M., Majoni, S. W., & Falhammar, H. (2018). Magnesium and Human Health: Perspectives and Research Directions. International Journal of Endocrinology, 9041694. https://doi.org/10.1155/2018/9041694

Al Juhaimi, F., Geçgel, Ü., Gülcü, M., Hamurcu, M., & Özcan, M. M. (2017). Bioactive properties, fatty acid composition and mineral contents of grape seed and oils. South African Journal of Enology and Viticulture, 38(1), 103-108. https://doi.org/10.21548/38-1-1042

Baglyas, F., & Hajdu, E. (2024). Szőlőfajták transzspirációjának modellezése tenyészedényekben. Acta Agronomica Óvárinesis, 65(1), 1-24. https://doi.org/10.17108/ActAgrOvar.2024.65.1.1

Bertinato, J., Xiao, W. C., Ratnayake, W. M. N., Fernandez, L., Lavergne, C., Wood, C., & Swist, E. (2015). Lower serum magnesium concentration is associated with diabetes, insulin resistance, and obesity in South Asian and white Canadian women but not men. Food & Nutrition Research, 59, 25974. https://doi.org/10.3402/fnr.v59.25974

Canizo, V., Escudero, B. L., Pérez, B. M., Pellerano, G. R., & Wuilloud, G. R. (2018). Intra-regional classification of grape seeds produced in Mendoza province. Food Chemistry, 242, 272-278. https://doi.org/10.1016/j.foodchem.2017.09.062

Chasapis, C. T., Loutsidou, A. C., Spiliopoulou, C. A., & Stefanidou, M. E. (2012). Zinc and human health: an update. Archives of Toxicology, 86, 521–534. https://doi.org/10.1007/s00204-011-0775-1

Childers, D. L., Corman, J., Edwards, M., & Elser, J. J. (2011). Sustainability Challenges of Phosphorus and Food: Solutions from Closing the Human Phosphorus Cycle. BioScience, 61(2), 117–124. https://doi.org/10.1525/bio.2011.61.2.6

Cormick, G., & Belizán, J. M. (2019). Calcium Intake and Health. Nutrients, 11(7), 1606. https://doi.org/10.3390/nu11071606

Grober, U., Schmidt, J., & Kisters, K. (2015). Magnesium in prevention and therapy. Nutrients, 7(9), 8199–8226. https://doi.org/10.3390/nu7095388

Horning, K. J., Caito, S. W., Tipps, K. G., Bowman, A. B., & Aschner, M. (2015). Manganese Is Essential for Neuronal Health. Annual Review of Nutrition, 35, 71-108. https://doi.org/10.1146/annurev-nutr-071714-034419

Lachman, J., Hejtmánková, A., Hejtmánková, K., Horníčková, Š., Pivec, V., Skala, O., Dědina, M., & Přibyl, J. (2013). Towards complex utilisation of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essential elements content as a by-product of winemaking. Industrial Crops and Products, 49, 445-453. https://doi.org/10.1016/j.indcrop.2013.05.022

Licev, V., Bojinov, A., & Dimov, C. (1974). Izlndovane na lignina v grazdovite semki. Lozar. Vinar., 5, 29-32.

Kapcsándi, V., Hanczné Lakatos, E., Sik, B., Linka, L. Á., & Székelyhidi, R. (2021). Characterization of fatty acid, antioxidant, and polyphenol content of grape seed oil from different Vitis vinifera L. varieties. OCL, 28, 30. https://doi.org/10.1051/ocl/2021017

Martin, M. E., Grao-Cruces, E., & Millan-Linares, M. C. (2020). Montserrat-de la Paz S. Grape (Vitis vinifera L.) Seed Oil: A Functional Food from the Winemaking Industry. Foods, 9(10), 1360. https://doi.org/10.3390/foods9101360

Mattos, G. N., Tonon, R. V., Furtado, A. A. L., & Cabral, L. M. C. (2017). Grape byproduct extracts against microbial proliferation and lipid oxidation: a review. Journal of the Science of Food and Agriculture, 97(4), 1055-1064. https://doi.org/10.1002/jsfa.8062

Mironeasa, S., Leahu, A., Georgiana-Gabriela, C., Stroe, S. G., & Mironeasa, C. (2010). Grape Seed: physico-chemical, structural characteristics and oil content. Journal of Agroalimentary Processes and Technologies, 16(1), 1-6.

Oprea, O. B., Popa, M. E., Apostol, L., & Gaceu, L. (2022). Research on the Potential Use of Grape Seed Flour in the Bakery Industry. Foods, 11(11), 1589. https://doi.org/10.3390/foods11111589

Pottyondi, Á. (2010). Élőhelyfejlesztés vs élőhelyvédelem – A pannonhalmi világörökségi helyszín fejlesztési alapelvei. Az élhető vidékért 2010. Környezetgazdálkodási konferencia, 129-133.

Rubilar, M., Burgos-Díaz, C., & Lorenzo, J. M. (2016). Grape Seeds (Vitis Vinifera) and Their Nutritional Value. In Rodríguez J. M. L., & Ruiz D.F. (Eds.), Grape Seeds: Nutrient Content, Antioxidant Properties and Health Benefits (pp. 197-210). Nova Science.

Suzuki, I., Lee, D., Mackay, B., Harahuc, L., & Oh, J. K. (1999). Effect of various ions, pH, and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Applied and Environmental Microbiology Journal, 65(11), 5163-5168. https://doi.org/10.1128/aem.65.11.5163-5168.1999

Tangolar, S. G., Özoğul, Y., Tangolar, S., & Torun, A. (2009). Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. International Journal of Food Sciences and Nutrition, 60(1), 32-39. https://doi.org/10.1080/09637480701581551

Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Journal of the American Dietetic Association, 101(3), 294-301. https://doi.org/10.17226/10026

Vaghari-Tabari, M., Jafari-Gharabaghlou, D., Sadeghsoltani, F., Hassanpour, P., Qujeq, D., Rashtchizadeh, N., & Ghorbanihaghjo, A. (2021). Zinc and Selenium in Inflammatory Bowel Disease: Trace Elements with Key Roles? Biological Trace Element Research, 199, 3190-3204. https://doi.org/10.1007/s12011-020-02444-w

WHO (2012). Guideline: Potassium intake for adults and children. Geneva, World Health Organization (WHO), WHO Press.

Yang, Y., Duan, C., Du, H., Tian, J., & Pan, Q. (2010). Trace Element and Rare Earth Element Profiles in Berry Tissues of Three Grape Cultivars. American Journal of Enology and Viticulture, 61(3), 401-407. https://doi.org/10.5344/ajev.2010.61.3.401

Downloads

Published

2024-12-16

How to Cite

Székelyhidi, R., Giczi, Z., Hanczné Lakatos, E., Kapcsándi, V., & Sik, B. (2024). The Effect of Grape Variety on the Micro- and Macroelement Composition of Grape Seeds. Acta Agronomica Óváriensis, 65(2), 90–98. https://doi.org/10.17108/ActAgrOvar.2024.65.2.90

Issue

Section

Scientific paper