Enhancing Agricultural Sustainability using AI-Driven Soil Moisture Modeling: A Soil-Type and Depth Approach with SHAP Interpretability

Authors

  • Tarek Alahmad Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Department of Bioengineering and Precision Technology, Mosonmagyaróvár, Hungary https://orcid.org/0000-0003-1683-7086
  • Miklós Neményi Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Department of Bioengineering and Precision Technology, Mosonmagyaróvár, Hungary https://orcid.org/0000-0002-7705-7190
  • Anikó Nyéki Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University, Department of Bioengineering and Precision Technology, Mosonmagyaróvár, Hungary https://orcid.org/0000-0002-5388-2241

DOI:

https://doi.org/10.17108/ActAgrOvar.2025.66.2.5

Keywords:

soil moisture content prediction, Random Forest Regression (RFR), IoT sensors, soil-depth specific modelling, irrigation strategies

Abstract

The accurate prediction of soil moisture content (SMC) is important for optimizing irrigation, reducing water wastages and enhancing sustainability in agriculture. This study developed a Random Forest Regression model for soil-depth-specific prediction of SMC during two vegetation seasons. The model was applied to two soil types (loam and silt loam) at five depths with two different scenarios based on the used inputs: the first used only vegetation indices and the second integrated meteorological data with the vegetation indices. The results showed a significant rise in model’s accuracy in the second scenario in both soil types at all depths, highlighting the importance of integrating meteorological features. In loam soil, R2 increased from 0.65, 0.61, and 0.82, in the first scenario, to 0.94, 0.83 and 0.87, in second scenario, at 5, 20 and 40 cm depth, respectively. Similarly in silt loam, at 5, 20 and 40 cm depths the R2 in the second scenario improved to get an R2 of 0.97, 0.96 and 0.94, respectively, compared with an R2 of 0.88, 0.94 and 0.82 in the first scenario at same depths, respectively. SHAP (SHapley Additive ExPlanations) research revealed that the most influential features on SMC prediction were precipitation, humidity, Normalized Difference Vegetation Index (NDVI) in loam soil, and solar radiation and NDVI in silt loam. These results emphasized that integrated meteorological data increases the model’s performance in SMC prediction, and the importance of SHAP explainability for enhancing model interpretability and support real-time irrigation decision making. This research allows for better water resource management and enhances sustainability.

References

Ågren, A. M., Larson, J., Paul, S. S., Laudon, H., & Lidberg, W. (2021). Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape. Geoderma, 404, 115280. https://doi.org/10.1016/j.geoderma.2021.115280

Alahmad, T., Neményi, M., & Nyéki, A. (2024). Soil Moisture Content Prediction in Loam Soil with RFR Model. Acta Agronomica Óváriensis, 65(2), 43-56. https://doi.org/10.17108/ActAgrOvar.2024.65.2.43

Alahmad, T., Neményi, M., & Nyéki, A. (2025a). Soil Moisture Content Prediction Using Gradient Boosting Regressor (GBR) Model: Soil-Specific Modeling with Five Depths. Applied Sciences, 15(11), 5889. https://doi.org/10.3390/app15115889

Alahmad, T., Neményi, M., & Nyéki, A. (2025b). Soil moisture prediction with machine learning: combining vegetation indices and meteorological data. In Precision agriculture’25 (pp. 1319-1326). Wageningen Academic.

Bibek, A., & Vivek, S. (2025). Comparative analysis of soil and water dynamics in conventional and sod-based crop rotation in Florida. Frontiers in Agronomy, 7. https://doi.org/doi:10.3389/fagro.2025.1552425

Bramley, R. G. V., Perry, E. M., Richetti, J., Colaço, A. F., Mowat, D. J., Ratcliff, C. E. M., & Lawes, R. A. (2024). Within-field extrapolation away from a soil moisture probe using freely available satellite imagery and weather data. Precision Agriculture, 25(4), 1877-1893. https://doi.org/10.1007/s11119-024-10138-9

Celik, M. F., Isik, M. S., Yuzugullu, O., Fajraoui, N., & Erten, E. (2022). Soil Moisture Prediction from Remote Sensing Images Coupled with Climate, Soil Texture and Topography via Deep Learning. Remote Sensing, 14(21), 5584. https://doi.org/10.3390/rs14215584

Chen, P.-Y., Chen, C.-C., Kang, C., Liu, J.-W., & Li, Y.-H. (2025). Soil water content prediction across seasons using random forest based on precipitation-related data. Computers and Electronics in Agriculture, 230, 109802. https://doi.org/10.1016/j.compag.2024.109802

Dirksen, C. (1999). Soil physics measurements. Catena Verlag.

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., & Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026

Gao, Y., Xie, Y., Jiang, H., Wu, B., & Niu, J. (2014). Soil water status and root distribution across the rooting zone in maize with plastic film mulching. Field Crops Research, 156, 40-47. https://doi.org/10.1016/j.fcr.2013.10.016

Guo, F., Huang, Z., Su, X., Li, Y., Luo, L., Ba, Y., Zhang, Z., & Yao, Y. (2024). Soil Moisture Content Inversion Model on the Basis of Sentinel Multispectral and Radar Satellite Remote Sensing Data. Journal of Soil Science and Plant Nutrition, 24(4), 7919-7933. https://doi.org/10.1007/s42729-024-02087-z

Hussein, E. E., Zerouali, B., Bailek, N., Derdour, A., Ghoneim, S. S. M., Santos, C. A. G., & Hashim, M. A. (2024). Harnessing Explainable AI for Sustainable Agriculture: SHAP-Based Feature Selection in Multi-Model Evaluation of Irrigation Water Quality Indices. Water, 17(1), 59. https://doi.org/10.3390/w17010059

Li, B., You, Z., Ni, K., & Wang, Y. (2024). Prediction of Soil Compaction Parameters Using Machine Learning Models. Applied Sciences, 14(7), 2716. https://doi.org/10.3390/app14072716

Luo, W., Xu, X., Liu, W., Liu, M., Li, Z., Peng, T., Xu, C., Zhang, Y., & Zhang, R. (2019). UAV based soil moisture remote sensing in a karst mountainous catchment. CATENA, 174, 478-489. https://doi.org/10.1016/j.catena.2018.11.017

Ning, J., Yao, Y., Tang, Q., Li, Y., Fisher, J. B., Zhang, X., Jia, K., Xu, J., Shang, K., Yang, J., Yu, R., Liu, L., Zhang, X., Xie, Z., & Fan, J. (2023). Soil moisture at 30 m from multiple satellite datasets fused by random forest. Journal of Hydrology, 625, 130010. https://doi.org/10.1016/j.jhydrol.2023.130010

Nyéki, A., Kerepesi, C., Daróczy, B., Benczúr, A., Milics, G., Nagy, J., Harsányi, E., Kovács, A. J., & Neményi, M. (2021). Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods. Precision Agriculture, 22(5), 1397-1415. https://doi.org/10.1007/s11119-021-09833-8

Python Software Foundation. (2024). Python Language Reference, version 3.10. https://www.python.org QGIS. (2024). QGIS. https://qgis.org/

Saha, A., Patil, M., Goyal, V. C., & Rathore, D. S. (2019). Assessment and Impact of Soil Moisture Index in Agricultural Drought Estimation Using Remote Sensing and GIS Techniques. Proceedings, 7(1), 2. https://doi.org/10.3390/ECWS-3-05802

Sentinel Hub. (2024). https://www.sentinel-hub.com

Sihag, P., Tiwari, N. K., & Ranjan, S. (2019). Prediction of cumulative infiltration of sandy soil using random forest approach. Journal of Applied Water Engineering and Research, 7(2), 118-142. https://doi.org/10.1080/23249676.2018.1497557

Songara, J. C., & Patel, J. N. (2022). Calibration and comparison of various sensors for soil moisture measurement. Measurement, 197, 111301. https://doi.org/10.1016/j.measurement.2022.111301

Tarolli, P., & Zhao, W. (2023). Drought in agriculture: Preservation, adaptation, migration. The Innovation Geoscience, 1(1), 100002. https://doi.org/10.59717/j.xinn-geo.2023.100002

USDA. ND. (2020). Natural Resources Conservation Service. Soil classification. Retrieved October 17, 2020, from https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/survey/class/

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe, C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans, 90(C5), 8995-9005. https://doi.org/10.1029/JC090iC05p08995

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557.

Zheng, J., Jin, X., Li, Q., Lang, J., & Yin, X. (2024). Soil moisture variation and affecting factors analysis in the Zhangjiakou–Chengde district based on modified temperature vegetation dryness index. Ecological Indicators, 168, 112775. https://doi.org/10.1016/j.ecolind.2024.112775

Zhu, S., Cui, N., Jin, H., Jin, X., Guo, L., Jiang, S., Wu, Z., Lv, M., Chen, F., Liu, Q., & Wang, M. (2024). Optimization of multi-dimensional indices for kiwifruit orchard soil moisture content estimation using UAV and ground multi-sensors. Agricultural Water Management, 294, 108705. https://doi.org/10.1016/j.agwat.2024.108705

Downloads

Published

2025-12-22

How to Cite

Alahmad, T., Neményi, M., & Nyéki, A. (2025). Enhancing Agricultural Sustainability using AI-Driven Soil Moisture Modeling: A Soil-Type and Depth Approach with SHAP Interpretability. Acta Agronomica Óváriensis, 66(2), 5–16. https://doi.org/10.17108/ActAgrOvar.2025.66.2.5

Issue

Section

Scientific paper