Alternative Fermented Feeds in Ruminant Nutrition: Effects on Rumen Fermentation and Milk Production (A Review)
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.2.84Keywords:
fermented feed, FTRM, rumen fermentation, milk production, sustainabilityAbstract
The continuous rise in feed costs and the increasing competition for feed resources have made the search for innovative feeding strategies in ruminant production increasingly urgent. This paper reviews the effects of fermented feeds—including fermented total mixed rations (FTMR) and fermented concentrate ingredients such as soybean meal, corn gluten meal, yellow wine lees, and rapeseed by-products—on rumen fermentation, milk yield, and milk composition. Fermented feeds have received growing attention in recent years, as they have been shown to improve nutrient digestibility, enhance the activity of beneficial ruminal microorganisms, and positively influence fermentation processes. Evidence suggests that their inclusion not only improves milk yield and composition but also enhances feed efficiency and overall animal health indicators. Furthermore, some studies report increased profitability, although available data on cost-effectiveness remain limited. Overall, the use of fermented feeds represents a promising approach to addressing the challenges of modern livestock production and may contribute to the development of more economical and sustainable ruminant husbandry.
References
Amin, A. B., Zhang, L., Zhang, J., & Mao, S. (2022). Fermented soybean meal modified the rumen microbiome to enhance the yield of milk components in Holstein cows. Applied Microbiology and Biotechnology, 106(22), 7627-7642. https://doi.org/10.1007/s00253-022-12240-2
Bayat, H., Cheng, F., Dehghanizadeh, M., & Brewer, C. E. (2021). Recovery of Nitrogen from Low-Cost Plant Feedstocks Used for Bioenergy: A Review of Availability and Process Order. Energy & Fuels, 35(18), 14361-14381. https://doi.org/10.1021/acs.energyfuels.1c02140
Boguhn, J., Kluth, H., Bulang, M., Engelhard, T., Spilke, J., & Rodehutscord, M. (2008). Effects of using thermally treated lupins instead of soybean meal and rapeseed meal in total mixed rations on in vitro microbial yield and performance of dairy cows. Journal of animal physiology and animal nutrition, 92(6), 694-704. https://doi.org/10.1111/j.1439-0396.2007.00767.x
Canibe, N., & Jensen, B. B. (2012). Fermented liquid feed—Microbial and nutritional aspects and impact on enteric diseases in pigs. Animal Feed Science and Technology, 173(1-2), 17-40. https://doi.org/10.1016/j.anifeedsci.2011.12.021
Cao, Y., Takahashi, T., Horiguchi, K. I., Yoshida, N., & Cai, Y. (2010). Methane emissions from sheep fed fermented or non-fermented total mixed ration containing whole-crop rice and rice bran. Animal Feed Science and Technology, 157(1-2), 72-78. https://doi.org/10.1016/j.anifeedsci.2010.02.004
Couto, S. R., & Sanromán, M. A. (2006). Application of solid-state fermentation to food industry—a review. Journal of Food Engineering, 76(3), 291-302. https://doi.org/10.1016/j.jfoodeng.2005.05.022
da Silva, A. L., dos Santos, B. R. C., Perazzo, A. F., Neto, J. M. C., de Sousa Santos, F. N., Pereira, D. M., & Santos, E. M. (2019). Haylage: a forage conservation alternative. Nucleus Animalium, 11(1), 73-80. https://doi.org/10.3738/21751463.3560
Eun, J. B., Jin, T. Y., & Wang, M. H. (2007). The effect of waxy glutinous rice degree of milling on the quality of Jinyangju, a Korean traditional rice wine. Korean Journal of Food Science and Technology, 39(5), 546-551.
Feizi, L. K., Zad, S. S., Jalali, S. A. H., Rafiee, H., Jazi, M. B., Sadeghi, K., & Kowsar, R. (2020). Fermented soybean meal affects the ruminal fermentation and the abundance of selected bacterial species in Holstein calves: a multilevel analysis. Scientific reports, 10(1), 12062. https://doi.org/10.1038/s41598-020-68778-6
Gao, J., Cheng, B., Sun, Y., Zhao, Y., & Zhao, G. (2022). Effects of dietary inclusion with rapeseed cake containing high glucosinolates on nitrogen metabolism and urine nitrous oxide emissions in steers. Animal Nutrition, 8, 204-215. https://doi.org/10.1016/j.aninu.2021.05.006
Gao, M., Cieślak, A., Huang, H., Gogulski, M., Petrič, D., Ruska, D., Patra, A. K., El-Sherbiny, M., & Szumacher-Strabel, M. (2023). Effects of raw and fermented rapeseed cake on ruminal fermentation, methane emission, and milk production in lactating dairy cows. Animal Feed Science and Technology, 300, 115644. https://doi.org/10.1016/j.anifeedsci.2023.115644
Goiri, I., Zubiria, I., Lavín, J. L., Benhissi, H., Atxaerandio, R., Ruiz, R., Mandaluniz, N., & García-Rodríguez, A. (2021). Evaluating the inclusion of cold-pressed rapeseed cake in the concentrate for dairy cows upon ruminal biohydrogenation process, ruminal microbial community and milk production and acceptability. Animals, 11(9), 2553. https://doi.org/10.3390/ani11092553
Gomez-Alarcon, R. A., Dudas, C., & Huber, J. T. (1990). Influence of cultures of Aspergillus oryzae on rumen and total tract digestibility of dietary components. Journal of Dairy Science, 73(3), 703-710. https://doi.org/10.3168/jds.S0022-0302(90)78723-1
Hong, K. J., Lee, C. H., & Kim, S. W. (2004). Aspergillus oryzae GB-107 fermentation improves nutritional quality of food soybeans and feed soybean meals. Journal of Medicinal Food, 7(4), 430-435. https://doi.org/10.1089/jmf.2004.7.430
Hu, X., Hao, W., Wang, H., Ning, T., Zheng, M., & Xu, C. (2015). Fermentation Characteristics and Lactic Acid Bacteria Succession of Total Mixed Ration Silages Formulated with Peach Pomace. Asian-Australasian Journal of Animal Sciences, 28(4), 502-510. https://doi.org/10.5713/ajas.14.0508
Hu, Y., Pan, L., Dun, Y., Peng, N., Liang, Y., & Zhao, S. (2014). Conversion of yellow wine lees into high-protein yeast culture by solid-state fermentation. Biotechnology & Biotechnological Equipment, 28(5), 843-849. https://doi.org/10.1080/13102818.2014.962407
Jeong, C. D., Mamuad, L. L., Ko, J. Y., Sung, H. G., Park, K. K., Lee, Y. K., & Lee, S. S. (2016). Rumen fermentation and performance of Hanwoo steers fed total mixed ration with Korean rice wine residue. Journal of Animal Science and Technology, 58, 4. https://doi.org/10.1186/s40781-016-0084-6
Jiang, X., Liu, X., Liu, S., Li, Y., Zhao, H. B., & Zhang, Y. G. (2019). Growth, rumen fermentation and plasma metabolites of Holstein male calves fed fermented corn gluten meal during the postweaning stage. Animal Feed Science and Technology, 249, 1-9. https://doi.org/10.1016/j.anifeedsci.2019.01.012
Jiang, X., Ma, G. M., Cui, Z. Q., Li, Y., & Zhang, Y. G. (2020). Effects of fermented corn gluten meal on growth performance, plasma metabolites, rumen fermentation and bacterial community of Holstein calves during the pre-weaning period. Livestock Science, 231, 103866. https://doi.org/10.1016/j.livsci.2019.103866
Kara, K., & Öztaş, M. A. (2023). The effect of dietary fermented grape pomace supplementation on in vitro total gas and methane production, digestibility, and rumen fermentation. Fermentation, 9(8), 741. https://doi.org/10.3390/fermentation9080741
Katu, J. K., Tóth, T., & Varga, L. (2025). Enhancing the nutritional quality of low-grade poultry feed ingredients through fermentation: A review. Agriculture, 15(5), 476. https://doi.org/10.3390/agriculture15050476
Kim, S. H., Alam, M. J., Gu, M. J., Park, K. W., Jeon, C. O., Ha, J. K., Cho, K. K., & Lee, S. S. (2012). Effect of total mixed ration with fermented feed on ruminal in vitro fermentation, growth performance and blood characteristics of Hanwoo steers. Asian-Australasian Journal of Animal Sciences, 25(2), 213-223. https://doi.org/10.5713/ajas.2011.11186
Kim, T. I., Mayakrishnan, V., Lim, D. H., Yeon, J. H., & Baek, K. S. (2018). Effect of fermented total mixed rations on the growth performance, carcass and meat quality characteristics of Hanwoo steers. Animal Science Journal, 89(3), 606-615. https://doi.org/10.1111/asj.12958
Knapp, J. R., Laur, G. L., Vadas, P. A., Weiss, W. P., & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. Journal of dairy science, 97(6), 3231-3261. https://doi.org/10.3168/jds.2013-7234
Kondo, M., Shimizu, K., Jayanegara, A., Mishima, T., Matsui, H., Karita, S., Goto, M., & Fujihara, T. (2016). Changes in nutrient composition and in vitro ruminal fermentation of total mixed ration silage stored at different temperatures and periods. Journal of the Science of Food and Agriculture, 96(4), 1175-1180. https://doi.org/10.1002/jsfa.7200
Kung Jr, L., Shaver, R. D., Grant, R. J., & Schmidt, R. J. (2018). Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. Journal of dairy Science, 101(5), 4020-4033. https://doi.org/10.3168/jds.2017-13909
Lee, S., Ryu, C. H., Back, Y. C., Lee, S. D., & Kim, H. (2023). Effect of fermented concentrate on ruminal fermentation, ruminal and fecal microbiome, and growth performance of beef cattle. Animals, 13(23), 3622. https://doi.org/10.3390/ani13233622
Liu, X., Feng, J., Xu, Z., Lu, Y., & Liu, Y. (2007). The effects of fermented soybean meal on growth performance and immune characteristics in weaned piglets. Turkish Journal of Veterinary & Animal Sciences, 31(5), 341-345.
Miguel, M., Mamuad, L., Ramos, S., Ku, M. J., Jeong, C. D., Kim, S. H., Cho, Y. I., & Lee, S. S. (2021). Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population. Animal Bioscience, 34(4), 642-651. https://doi.org/10.5713/ajas.20.0386
Muck, R. E. (2010). Silage microbiology and its control through additives. Revista Brasileira de Zootecnia, 39, 183-191. https://doi.org/10.1590/S1516-35982010001300021
Niba, A. T., Beal, J. D., Kudi, A. C., & Brooks, P. H. (2009). Bacterial fermentation in the gastrointestinal tract of non-ruminants: influence of fermented feeds and fermentable carbohydrates. Tropical animal health and production, 41, 1393-1407. https://doi.org/10.1007/s11250-009-9327-6
Negawoldes, T. Y. (2018). Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. J Nutr Health Food Eng, 8(1), 43-48. https://doi.org/10.15406/jnhfe.2018.08.00254
Neumann, P. E., Walker, C. E., & Wang, H. L. (1984). Fermentation of corn gluten meal with Aspergillus oryzae and Rhizopus oligosporus. Journal of Food Science, 49(4), 1200-1201. https://doi.org/10.1111/j.1365-2621.1984.tb10429.x
Nishino, N., Harada, H., & Sakaguchi, E. (2003). Evaluation of fermentation and aerobic stability of wet brewers' grains ensiled alone or in combination with various feeds as a total mixed ration. Journal of the Science of Food and Agriculture, 83(6), 557-563. https://doi.org/10.1002/jsfa.1395
Paul, O. B., Urmi, S. S., & Biswas, M. A. A. (2023). Effect of TMR and Fermented TMR on ruminal in vitro digestion and gas production Adv. Anim. Vet. Sci, 11(4), 586-594. https://doi.org/10.3389/fvets.2024.1408348
Piamphon, N., Wachirapakorn, C., Bannasan, K., Pornsopin, P., Sotawong, P., & Gunun, P. (2017). Influence of Aspergillus niger or Saccharomyces cerevisiae-fermented Napier grass (Pennisetum purpureum) mixed with fresh cassava root on blood parameters and nutrient digestibility in growing beef cattle. Pak J Nutr, 16(10), 776-781. https://doi.org/10.3923/pjn.2017.776.781
Rehemujiang, H., Yusuf, H. A., Ma, T., Diao, Q., Kong, L., Kang, L., & Tu, Y. (2023). Fermented cottonseed and rapeseed meals outperform soybean meal in improving performance, rumen fermentation, and bacterial composition in Hu sheep. Frontiers in Microbiology, 14, 1119887. https://doi.org/10.3389/fmicb.2023.1119887
Rezazadeh, F., Kowsar, R., Rafiee, H., & Riasi, A. (2019). Fermentation of soybean meal improves growth performance and immune response of abruptly weaned Holstein calves during cold weather. Animal Feed Science and Technology, 254, 114206. https://doi.org/10.1016/j.anifeedsci.2019.114206
Rodríguez-Muela, C., Rodríguez, H. E., Arzola, C., Díaz-Plascencia, D., Ramírez-Godínez, J. A., Flores-Mariñelarena, A., Mancillas-Flores, P. F., & Corral, G. (2015). Antioxidant activity in plasma and rumen papillae development in lambs fed fermented apple pomace. Journal of Animal Science, 93(5), 2357-2362. https://doi.org/10.2527/jas.2014-8670
Salami, S. A., Luciano, G., O'Grady, M. N., Biondi, L., Newbold, C. J., Kerry, J. P., & Priolo, A. (2019). Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Animal Feed Science and Technology, 251, 37-55. https://doi.org/10.1016/j.anifeedsci.2019.02.006
Sirohi, S. K., Malik, R., & Walli, T. K. (2001). Development and evaluation of protected fat in wheat straw based total mixed ration. Asian-Australasian Journal of Animal Sciences, 14(10), 1405-1408. https://doi.org/10.5713/ajas.2001.1405
Scholten, R. H., van der Peet-Schwering, C. M., Verstegen, M. W., Den Hartog, L. A., Schrama, J. W., & Vesseur, P. C. (1999). Fermented co-products and fermented compound diets for pigs: a review. Animal Feed Science and Technology, 82(1-2), 1-19. https://doi.org/10.1016/S0377-8401(99)00096-6
Shan, C. H., Guo, J., Sun, X., Li, N., Yang, X., Gao, Y., Qiu, D., Li, X., Wang, Y., Feng, M., Wang, C., & Zhao, J. J. (2018). Effects of fermented Chinese herbal medicines on milk performance and immune function in late-lactation cows under heat stress conditions. Journal of Animal Science, 96(10), 4444-4457. https://doi.org/10.1093/jas/sky270
Song, Y., Sun, L., Zhang, S., Fan, K., Wang, H., Shi, Y., Shen, Y., Wang, W., Zhang, J., Han, X., Mao, Y., Wang, Y., & Ding, Z. (2022). Enzymes and microorganisms jointly promote the fermentation of rapeseed cake. Frontiers in Nutrition, 9, 989410. https://doi.org/10.3389/fnut.2022.989410
Su, Y., Chen, G., Cai, Y., Gao, B., Zhi, X., & Chang, F. (2020). Effects of Broussonetia papyrifera-fermented feed on the growth performance and muscle quality of Hu sheep. Canadian Journal of Animal Science, 100(4), 771-780. https://doi.org/10.1139/cjas-2018-0167
Subramaniyam, R., & Vimala, R. (2012). Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat, 3(3), 480-486.
Xie, Y., Xu, S., Li, W., Wang, M., Wu, Z., Bao, J., Jia, T., & Yu, Z. (2020). Effects of the application of Lactobacillus plantarum inoculant and potassium sorbate on the fermentation quality, in vitro digestibility and aerobic stability of total mixed ration silage based on alfalfa silage. Animals, 10(12), 2229. https://doi.org/10.3390/ani10122229
Xu, C., Cai, Y., Moriya, N., & Ogawa, M. (2007). Nutritive value for ruminants of green tea grounds as a replacement of brewers’ grains in totally mixed ration silage. Animal Feed Science and Technology, 138(3-4), 228-238. https://doi.org/10.1016/j.anifeedsci.2006.11.014
Yang, J., Tan, H., & Cai, Y. (2016). Characteristics of lactic acid bacteria isolates and their effect on silage fermentation of fruit residues. Journal of Dairy Science, 99(7), 5325-5334. https://doi.org/10.3168/jds.2016-10952
Yao, K. Y., Zhang, T. Z., Wang, H. F., & Liu, J. X. (2018). Upgrading of by‐product from beverage industry through solid‐state fermentation with Candida utilis and Bacillus subtilis. Letters in applied microbiology, 67(6), 557-563. https://doi.org/10.1111/lam.13078
Yao, K. Y., Gu, F. F., & Liu, J. X. (2020). In vitro rumen fermentation characteristics of substrate mixtures with soybean meal partially replaced by microbially fermented yellow wine lees. Italian Journal of Animal Science, 19(1), 18-24. https://doi.org/10.1080/1828051X.2019.1686433
Vasupen, K., Yuangklang, C., Witayakun, S., & Srinanuan, P. (2005). Effect of different moisture on quality of fermented total mixed ration. CABI.
Zamudio, D., Killerby, M. A., Charley, R. C., Chevaux, E., Drouin, P., Schmidt, R. J., Bright, J., & Romero, J. J. (2024). Factors affecting nutrient losses in hay production. Grass and Forage Science, 79(4), 499-515. https://doi.org/10.1111/gfs.12685
Zhang, G., Li, Y., Fang, X., Cai, Y., & Zhang, Y. (2020). Lactation performance, nitrogen utilization, and profitability in dairy cows fed fermented total mixed ration containing wet corn gluten feed and corn stover in combination replacing a portion of alfalfa hay. Animal Feed Science and Technology, 269, 114687. https://doi.org/10.1016/j.anifeedsci.2020.114687
Zhang, L. U., Chung, J., Jiang, Q., Sun, R., Zhang, J., Zhong, Y., & Ren, N. (2017). Characteristics of rumen microorganisms involved in anaerobic degradation of cellulose at various pH values. Rsc Advances, 7(64), 40303-40310. https://doi.org/10.1039/C7RA06588D
Zhang, L., Tian, H., Shi, H., Pan, S., Chang, J., Dangal, S. R. S., Qin, X., Wang, S., Tubiello, F. N., Canadell, J. G., & Jackson, R. B. (2022). A 130‐year global inventory of methane emissions from livestock: Trends, patterns, and drivers. Global Change Biology, 28(17), 5142-5158. https://doi.org/10.1111/gcb.16280
Zhao, M., Lv, D., Hu, J., He, Y., Wang, Z., Liu, X., Ran, B., & Hu, J. (2022). Hybrid Broussonetia papyrifera fermented feed can play a role through flavonoid extracts to increase milk production and milk fatty acid synthesis in dairy goats. Frontiers in Veterinary Science, 9, 794443. https://doi.org/10.3389/fvets.2022.794443
Zheng, G., & Qian, H. (2007). Ingredients and flavor analysis of yellow wine lees and study of its feasibility of making condiments. China Condiment, 4, 20-25.
Zhuang, H., Tang, N., & Yuan, Y. (2013). Purification and identification of antioxidant peptides from corn gluten meal. Journal of Functional Foods, 5(4), 1810-1821. https://doi.org/10.1016/j.jff.2013.08.013
Vasupen, K., Yuangklang, C., Sarnklong, C., Wongsuthavas, S., Mitchaothai, J., & Srenanul, P. (2006). Effects of total mixed ration and fermented total mixed ration on voluntary feed intake, digestion nutrients digestibility, and milk production in lactating dairy cows.
Verni, M., De Mastro, G., De Cillis, F., Gobbetti, M., & Rizzello, C. G. (2019). Lactic acid bacteria fermentation to exploit the nutritional potential of Mediterranean faba bean local biotypes. Food Research International, 125, 108571. https://doi.org/10.1016/j.foodres.2019.108571
Wang, C., & Nishino, N. (2013). Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. Journal of Applied Microbiology, 114(6), 1687-1695. https://doi.org/10.1111/jam.12200
Wang, L., Jin, S., Wang, P., Li, X., Liu, C., Sun, S., Zhang, G., Chang, J., Yin, Q., Zhang, H., & Zhu, Q. (2024). Fermented total mixed ration enhances nutrient digestibility and modulates the milk components and fecal microbial community in lactating Holstein dairy cows. Frontiers in Veterinary Science, 11, 1408348. https://doi.org/10.3389/fvets.2024.1408348
Wang, Z., Yu, Y., Li, X., Xiao, H., Zhang, P., Shen, W., Wan, F., He, J., Tang, S., Tan, Z., Wu, D., & Yao, H. (2021). Fermented soybean meal replacement in the diet of lactating Holstein dairy cows: modulated rumen fermentation and ruminal microflora. Frontiers in Microbiology, 12, 625857. https://doi.org/10.3389/fmicb.2021.625857
Wongnen, C., Wachirapakorn, C., Patipan, C., Panpong, D., Kongweha, K., Namsaen, N., Gunun, P., & Yuangklang, C. (2009). Effects of fermented total mixed ration and cracked cottonseed on milk yield and milk composition in dairy cows. Asian-Australasian Journal of Animal Sciences, 22(12), 1625-1632. https://doi.org/10.5713/ajas.2009.80668
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
