Selected Aspects of Reducing the Carbon Footprint in Pig Farming
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.2.99Keywords:
pig nutrition, sustainability, alternative protein sources, environmental impactAbstract
Pig production faces major environmental challenges, particularly in the field of nutrition. Reducing the dietary CO₂ footprint is of crucial importance, as most emissions stem from feed production primarily due to the use of protein ingredients such as soy. Since soy is largely imported, its use raises significant environmental and sustainability concerns. This paper aims to present various options that feeding systems of sustainable pig production can consider to mitigate their environmental impact, alongside strategies and innovations that may help reduce the CO₂ footprint. A brief overview is given of the environmental aspects of pig production, including the potential impacts arising from the transportation and manufacture of feed and feed ingredients. The paper also discusses the opportunities provided by the rational selection of protein crop species and varieties, as well as potential future directions that could contribute to lowering the environmental burden of pig production. Based on the available evidence, it can be concluded that achieving general sustainability objectives in pig production requires the localised cultivation of feed crop adapted to prevailing climate conditions, coupled with the use of innovative processing technologies that minimise field losses and energy consumption while reducing the production-related CO₂ footprint. Harvesting both vegetative and generative plant parts of various field crops at the optimal time for protein yield, and their subsequent use as fermented feed ingredients, may provide effective processing solutions.
References
Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: The 2012 revision. ESA Working Paper No. 12-03. Food and Agriculture Organization. https://www.fao.org/4/ap106e/ap106e.pdf
Andretta, I., Hickmann, F. M. W., Remus, A., Franceschi, C. H., Mariani, A. B., Orso, C., Kipper, M., Létourneau-Montminy, M.-P., & Pomar, C. (2021). Environmental Impacts of Pig and Poultry Production: Insights From a Systematic Review. Frontiers in Veterinary Science, 8, 750733. https://doi.org/10.3389/fvets.2021.750733
Andretta, I., Pomar, C., Rivest, J., Pomar, J., & Radünz, J. (2016). Precision feeding can significantly reduce lysine intake and nitrogen excretion without compromising the performance of growing pigs. Animal, 10, 1137-1147. https://doi.org/10.1017/S1751731115003067
Andretta, I., Pomar, C., Rivest, J., Pomar, J., Lovatto, P., & Radünz Neto, J. (2014). The impact of feeding growing-finishing pigs with daily tailored diets using precision feeding techniques on animal performance, nutrient utilization, and body and carcass composition. Journal of Animal Science, 92, 3925-3936. https://doi.org/10.2527/jas.2014-7643
Balogh, J. M., & Jámbor, A. (2020). Az agrárkereskedelem környezeti hatásainak vizsgálata szisztematikus szakirodalmi áttekintés segítségével. Közgazdasági Szemle, 67(9), 930-949. https://doi.org/10.18414/KSZ.2020.9.930
Bawden, R. J. (1991). Systems thinking and practice in agriculture. Journal of Dairy Science, 74, 2362-2373. https://doi.org/10.3168/jds.S0022-0302(91)78410-5
Borbélyné Dr. Hunyadi, É. (2023). A szójatermesztés biológiai alapjai – Gyakorlati útmutató a fajtaválasztáshoz az ökológiai szójatermesztésben. Ökológiai Mezőgazdasági Kutatóintézet (ÖMKi), Budapest. https://biokutatas.hu/kiadvany/gyakorlati-utmutato-a-fajtavalasztashoz-az-okologiai-szojatermesztesben
Chen, J., Wang, S., Ou, C. T., & Jiang, X. (2020). Study on carbon emission measurement and dynamic optimization of fresh meat supply chain. Journal of China Agricultural University, 25, 165-182. https://doi.org/10.3390/foods12234203
Conway, G. R. (1997). The doubly green revolution: Food for all in the 21st century. Cornell University Press.
Chriki, S., & Hocquette, J.-F. (2020). The myth of cultured meat: A review. Frontiers in Nutrition, 7(7). https://doi.org/10.3389/fnut.2020.00007
Ezeh, A., Kissling, F., & Singer, P. (2020). Why sub-Saharan Africa might exceed its projected population size by 2100. The Lancet, 396, 1131-1133. https://doi.org/10.1016/S0140-6736(20)31522-1
European Commission. (2017). EU agricultural outlook for the EU agricultural markets and income 2017–2030. https://agriculture.ec.europa.eu/system/files/2018-07/agricultural-outlook-2017-30_en_0.pdf
European Commission. (2018). Short-term outlook for EU agricultural markets in 2018 and 2019. https://commission.europa.eu/document/download/bbf88ec7-da61-4126-8a50-fa2f34beacd5_en?filename=sto-2018-autumn-methodology.pdf
European Commission. (2018). Report on the development of plant proteins in the European Union. https://agriculture.ec.europa.eu/document/download/73712bee-50e3-409a-9f47-88c5c7adb044_en?filename=pp-day1-panel-agronomic-practices-and-environmental-benefits_en.pdf
European Commission. (2020). Farm to Fork Strategy: For a fair, healthy and environmentally-friendly food system. https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en
European Commission. (2020). A körforgásos gazdaság cselekvési terve [Circular Economy Action Plan]. https://ec.europa.eu/commission/presscorner/api/files/attachment/863170/EU_Greendeal_Circular_economy_hu.pdf
Eurostat. (2024). EU trade by HS6 [HS 1201 – Soya beans]. Eurostat Comext database. https://agridata.ec.europa.eu/extensions/DataPortal/trade.html
Eurostat. (2024). EU imports of soya beans (HS 1201), 2022-2023. Eurostat Comext Database. https://trendeconomy.com/data/h2/EuropeanUnion/1201
FAO. (2006). Livestock’s long shadow: Environmental issues and options. Food and Agriculture Organization of the United Nations. https://www.fao.org/3/a0701e/a0701e00.htm
FAO. (2013). Climate-Smart Agriculture Sourcebook. Food and Agriculture Organization of the United Nations.
FAO. (2021). Climate-smart livestock production: A practical guide for Asia and the Pacific region. Food and Agriculture Organization of the United Nations.
FAO. (2023). Statistical Yearbook – World Food and Agriculture 2023. Food and Agriculture Organization of the United Nations.
Fledderus, J. (2005). Possibilities of soy concentrate in piglet feeds without AGPs. Report No. 728, Schothorst Feed Research, Lelystad, The Netherlands, 1-22.
Olesen, I., Groen, A. F., & Gjerde, B. (2000). Definition of animal breeding goals for sustainable production systems. Journal of Animal Science, 78(3), 570-582. https://doi.org/10.2527/2000.783570x
Guo, B., Sun, L., Jiang, S., Ren, H., Sun, R., Wei, Z., Hong, H., Luan, X., Wang, J., Wang, X., Xu, D., Li, W., Guo, C., & Qiu, L. J. (2022). Soybean genetic resources contributing to sustainable protein production. Theoretical and Applied Genetics, 135, 4095-4121. https://doi.org/10.1007/s00122-022-04222-9
Gyurcsó, G., Tóth, T., Fábián, J., Tossenberger, J. (2011, szeptember 29-30). Az L-valin kiegészítés hatása a brojlercsirkék fontosabb naturális mutatóira [Konferencia szekció]. LIII. Georgikon napok. Nemzetközi Tudományos Konferencia, Keszthely, Magyarország.
Hauschild, L., Pomar, C., & Lovatto, P. A. (2010). Systematic comparison of the empirical and factorial methods used to estimate the nutrient requirements of growing pigs. Animal, 4, 714-723. https://doi.org/10.1017/S1751731109991546
Hao, L., Su, W., Zhang, Y., Wang, C., Xu, B., Jiang, Z., Wang, F., Wang, Y., & Lu, Z. (2020). Effects of supplementing with fermented mixed feed on the performance and meat quality in finishing pigs. Animal Feed Science and Technology, 266, 114501. https://doi.org/10.1016/j.anifeedsci.2020.114501
Hung, A., Su, T. M., Liao, C. W., & Lu, J. J. (2008). Effect of probiotic combination fermented soybean meal on growth performance, lipid metabolism and immunological response of growing-finishing pigs. Asian Journal of Animal and Veterinary Advances, 3(6), 431-436. https://doi.org/10.3923/ajava.2008.431.436
Intergovernmental Panel on Climate Change (IPCC). (2007). Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC. https://www.ipcc.ch/report/ar4/syr/
Irish, P. R., & Balnave, D. (1993). Nutritional and antinutritional factors of feed ingredients used in pig diets. Animal Feed Science and Technology, 40(1-2), 137-147.
Jørgensen, H., Serena, A., Theil, P. K., Hedemann, M. S., & Knudsen, K. E. B. (2007). The fermentative capacity of growing pigs and adult sows fed diets with fermented feed ingredients. Livestock Science, 109(1-3), 111-114. https://doi.org/10.1016/j.livsci.2007.01.102
Kebreab, E., Strathe, A. B., Fadel, J. G., Moraes, L. E., & France, J. (2013). Impact of dietary manipulation on nutrient flows and greenhouse gas emissions in pig production: A review. Journal of Animal Science, 91(9), 4781-4792. https://doi.org/10.2527/jas.2013-6277
Kim, S. W., Less, J. F., Wang, L., Yan, T., Kiron, V., Kaushik, S. J., & Lei, X. G. (2019). Meeting global feed protein demand: Challenge, opportunity, and strategy. Annual Review of Animal Biosciences, 7, 17.1–17.23. https://doi.org/10.1146/annurev-animal-030117-014838
Központi Statisztikai Hivatal. (2023). A szójabab termelése vármegye és régió szerint, 2022. https://www.ksh.hu/stadat_files/mez/hu/mez0080.html
Központi Statisztikai Hivatal. (2024). Jövedelem és fogyasztás. https://www.ksh.hu/jovedelem-es-fogyasztas
Lestingi, A. (2024). Alternative and sustainable protein sources in pig diet: A review. Animals, 14(2), 310. https://doi.org/10.3390/ani14020310
Maher, S., Sweeney, T., & O’Doherty, J. V. (2025). Optimising nutrition for sustainable pig production: Strategies to quantify and mitigate environmental impact. Animals, 15(10), 1403. https://doi.org/10.3390/ani15101403
McDonald, S., Edwards, R. A., Greenhalgh, J. F. D., Morgan, C. A., Sinclair, L. A., & Wilkinson, R. G. (2011). Animal nutrition. Pearson Education Limited.
Miao, Z., Zhao, Z., Long, T., & Chen, X. (2023). Carbon footprint in agriculture sector: A literature review. Carbon Footprints, 2(13). https://doi.org/10.20517/cf.2023.29
National Research Council. (1994). Science and judgment in risk assessment. The National Academies Press. https://doi.org/10.17226/2125
National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. The National Academies Press. https://doi.org/10.17226/13165
National Research Council. (2016). Assessing the reliability of complex models: Mathematical and statistical foundations of verification, validation, and uncertainty quantification. The National Academies Press. https://doi.org/10.17226/13395
Noya, I., Aldea, X., Gasol, C. M., González-García, S., Amores, M. J., Colón, J., Ponsá, S., Roman, I., Rubio, M. A., Casas, E., Moreira, M. T., & Boschmonart-Rives, J. (2016). Carbon and water footprint of pork supply chain in Catalonia: From feed to final products. Journal of Environmental Management, 171, 133-143. https://doi.org/10.1016/j.jenvman.2016.01.039
OECD & Food and Agriculture Organization of the United Nations. (2023). OECD-FAO agricultural outlook 2023-2032. OECD Publishing.
Paris, B., Vandorou, F., Tyris, D., Balafoutis, A. T., Vaiopoulos, K., Kyriakarakos, G., Manolakos, D., & Papadakis, G. (2022). Energy use in the EU livestock sector: A review recommending energy efficiency measures and renewable energy sources adoption. Applied Sciences, 12(4), 2142. https://doi.org/10.3390/app12042142
Pelletier, N., Ibarburu, M., & Xin, H. (2013). A carbon footprint analysis of egg production and processing supply chains in the Midwestern United States. Journal of Cleaner Production, 54, 108-114. https://doi.org/10.1016/j.jclepro.2013.04.041
Petereit, J., Marsh, J. I., Bayer, P. E., Danilevicz, M. F., Thomas, W. J. W., Batley, J., & Edwards, D. (2022). Genetic and genomic resources for soybean breeding research. Plants, 11(9), 1181. https://doi.org/10.3390/plants11091181
Petropoulos, S. A., Barros, L., & Ferreira, I. C. F. R. (2023). Rediscovering local landraces: shaping horticulture for the future, volume II. Frontiers in Plant Science, 14, 1329995. https://doi.org/10.3389/fpls.2023.1329995
Philippe, F.-X., & Nicks, B. (2015). Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems & Environment, 199, 10-25. https://doi.org/10.1016/j.agee.2014.08.015
Pomar, C., Hauschild, L., Zhang, G. H., Pomar, J., & Lovatto, P. A. (2019). Precision feeding can significantly reduce feeding cost and nutrient excretion in growing pigs. Animal, 13(7), 1374-1383.
Poore, J., & Nemecek, T. (2018). Reducing food’s environmental impacts through producers and consumers. Science, 360(6392), 987-992. https://doi.org/10.1126/science.aaq0216
Popp, J., Harangi-Rákos, M., & Oláh, J. (2018). Fehérjetakarmány függőség az EU-ban: Status quo? Állattenyésztés és Takarmányozás, 67(4). 209-224.
Post, M. J. (2012). Cultured meat from stem cells: Challenges and prospects. Meat Science, 92(3), 297-301. https://doi.org/10.1016/j.meatsci.2012.04.008
Rakhshandeh, A., Htoo, J. K., Karrow, N., Miller, S. P., & de Lange, C. F. M. (2013). Impact of immune system stimulation on the ileal nutrient digestibility and utilisation of methionine plus cysteine intake for whole-body protein deposition in growing pigs. British Journal of Nutrition, 111, 101-110. https://doi.org/10.1017/S0007114513001955
Risner, D., Negulescu, P., Kim, Y., Nguyen, C., Siegel, J. B., & Spang, E. S. (2024). Environmental impacts of cultured meat: A cradle-to-gate life cycle assessment. ACS Food Science & Technology, 4(5), 577-586. https://doi.org/10.1021/acsfoodscitech.4c00281
Robinson, T. P., & Pozzi, F. (2011). Mapping supply and demand for animal-source foods to 2030. Animal Production and Health Working Paper. No. 2, Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/docrep/014/i2425e/i2425e00.pdf
Rauw, W. M., Rydhmer, L., Kyriazakis, I., Øverland, M., Gilbert, H., Dekkers, J. C. M., Hermesch, S., Bouquet, A., Gómez Izquierdo, E., Louveau, I., & Gomez-Raya, L. (2020). Prospects for sustainability of pig production in relation to climate change and novel feed resources. Journal of the Science of Food and Agriculture, 100(9), 3575-3586. https://doi.org/10.1002/jsfa.10338
Schulz, H., & Schulte, R. (2014). Energy efficiency in livestock production: A review of the role of feed and feed processing in reducing energy consumption. Livestock Science, 167, 90-98.
Sureshkumar, S., Song, J., Sampath, V., & Kim, I. (2023). Exogenous enzymes as zootechnical additives in monogastric animal feed: A review. Agriculture, 13(12), 2195. https://doi.org/10.3390/agriculture13122195
Smiricky-Tjardes, M. R., Grieshop, C. M., Flickinger, E. A., Bauer, L. L., Healy, H. P., & Fahey, G. C. Jr. (2003). Nutritional and immunological benefits of fermented soybean meal for weanling pigs. Journal of Animal Science, 81(10), 2496-2504.
Stein, H. H., Fuller, M. F., & Moughan, P. J. (2007). Definition of apparent, true, and standardized ileal digestibility of amino acids in pigs. Livestock Science, 109, 282-285.
Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M., & de Haan, C. (2006). Livestock's long shadow. Food and Agriculture Organization of the United Nations, Rome.
Sun, Y., Zhang, Y., & Wang, H. (2012). Effects of probiotics on nutrient digestibility and enzyme activity in weaned pigs. Animal Nutrition, 25(3), 245-251.
Tenke, J., Vida, O., Nagy, I., & Tossenberger, J. (2023). Classifying high performance genetic lines in pork production by evaluating ileal crude protein and selected amino acid digestibility in growing pigs. Animals, 13(12), 1898. https://doi.org/10.3390/ani13121898
Thompson, P. B., & Nardone, A. (1999). Sustainable livestock production: Methodological and ethical challenges. Livestock Production Science, 61, 111-119.
Tossenberger, J., Fébel, H., Babinszky, L., Gundel, J., Halas, V., & Bódisné Garbacz, Z. (2000). Az aminosavak ileális emészthetősége sertésekben. 1. közlemény: Az ileális emészthetőség meghatározása különböző módszerekkel. Állattenyésztés és Takarmányozás, 49(4), 375-384.
Tubiello, F. N., Rosenzweig, C., Conchedda, G., Karl, K., Gütschow, J., Pan, X., Obli-Laryea, G., Wanner, N., Yue Qiu, S., De Barros, J., Flammini, A., … & Sandalow, D. (2021). Greenhouse gas emissions from food systems: Building the evidence base. Environmental Research Letters, 16(6), 065007. https://doi.org/10.1088/1748-9326/ac018e?urlappend=%3Futm_source%3Dresearchgate.net%26utm_medium%3Darticle
USDA (United States Department of Agriculture). (2025). Soybean outlook: U.S. and global production estimates.
United Nations. (2022). World population prospects 2022: Summary of results. United Nations, Department of Economic and Social Affairs, Population Division. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
van der Werf, H. M. G., & Petit, J. (2002). Evaluation of the environmental impact of agriculture at the farm level: a comparison and analysis of 12 indicator-based methods. Agriculture, Ecosystems & Environment, 93(1-3), 131-145. https://doi.org/10.1016/S0167-8809(01)00354-1
Wu, Y., Zhao, J., Xu, C., Ma, N., He, T., Zhao, J., Ma, X., & Thacker, P. A. (2020). Progress towards pig nutrition in the last 27 years. Journal of the Science of Food and Agriculture, 100(14), 5102-5110. https://doi.org/10.1002/jsfa.9095
Yang, P., Yu, M., Ma, X., & Deng, D. (2023). Carbon footprint of the pork product chain and recent advancements in mitigation strategies. Foods, 12(23), Article 4203. https://doi.org/10.3390/foods12234203
Zebrowska-Lupina, I., & Kleinrok, Z. (1973). Behavioural effects of yohimbine administered intraventricularly in the rat. Psychopharmacologia, 33(3), 267-275.
Zhang, L. Y., Li, D. F., Qiao, S. Y., Wang, J. T., Bai, L., Wang, Z. Y., & Han, I. K. (2001). The effect of soybean galactooligosaccharides on nutrient and energy digestibility and digesta transit time in weaning piglets. Asian-Australasian Journal of Animal Sciences, 14, 1598-1604.
Zhang, Y., et al. (2020). Utilization of fermented soybean meal in swine diets: Effects on growth performance, nutrient digestibility, and meat quality. Journal of Animal Science and Biotechnology, 11(1), 1-10. https://doi.org/10.1016/j.jff.2022.105128
Zhou, Y., Dong, H., Xin, H., Zhu, Z., Huang, W., & Wang, Y. (2018). Carbon footprint assessment of a large-scale pig production system in northern China: A case study. Transactions of the ASABE, 61, 1121-1131.
Xu, B., Li, Z., Wang, C., Fu, J., Zhang, Y., Wang, Y., & Lu, Z. (2019). Effects of fermented feed supplementation on pig growth performance: A meta-analysis. Animal Feed Science and Technology, 259. https://doi.org/10.1016/j.anifeedsci.2019.114315
Xie, K., Dai, Y., Zhang, A., Yu, B., Luo, Y., Li, H., & He, J. (2022). Effects of fermented soybean meal on growth performance, meat quality, and antioxidant capacity in finishing pigs. Journal of Functional Foods, 94. https://doi.org/10.1016/j.jff.2022.105128
Yang, T. S. (2007). Environmental sustainability and social desirability issues in pig feeding. Asian-Australasian Journal of Animal Sciences, 20(4), 605-614.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
