The role of precision pig farming technologies in sustainable and competitive animal husbandry (Review)

Authors

DOI:

https://doi.org/10.17108/ActAgrOvar.2025.66.2.167

Keywords:

Precision Livestock Farming (PLF), Digitalization of Pig Production, Animal Welfare and Sustainability, , IoT and Sensor Technology, Feed Optimization

Abstract

The application of Precision Livestock Farming (PLF) technologies in Hungarian livestock production remains limited, although international trends clearly indicate that these solutions contribute to improved sustainability, animal welfare, and production efficiency. The aim of this review was to examine, based on the literature, how precision technologies enhance the economic and environmental performance of pig farming, and which factors influence their successful implementation. Analysis of the literature reveals that sensor-based data collection, automated feeding, and behaviour monitoring play a crucial role in optimizing production and improving animal welfare standards. However, the widespread adoption of these technologies is hindered by high investment costs, farmers’ limited digital skills, and uncertainties surrounding data management. Research clearly supports that the successful application of PLF requires not only technological development but also a paradigm shift, targeted training, and effective knowledge transfer. The future challenge lies in integrating data-driven decision-making into daily practice, which in the long term may lead to more competitive and environmentally sustainable production in Hungary as well.

References

Akinyemi, B. E., Akaichi, F., Siegford, J. M., & Turner, S. P. (2023). US Swine Industry Stakeholder Perceptions of Precision Livestock Farming Technology: A Q-Methodology Study. Animals, 13(18), 2930. https://doi.org/10.3390/ani13182930

Alexy, M., Pai, R. R., Ferenci, T., & Haidegger, T. (2024). The potential of RFID technology for tracking Mangalica pigs in the extensive farming system – a research from Hungary. Pastoralism: Research, Policy and Practice, 14, 12854. https://doi.org/10.3389/past.2024.12854

Arulmozhi, E., Bhujel, A., Moon, B.-E., & Kim, H.-T. (2021). The Application of Cameras in Precision Pig Farming: An Overview for Swine-Keeping Professionals. Animals, 11(8), 2343. https://doi.org/10.3390/ani11082343

Balontong, A. (2023, August 1-3). TimBaboy: Swine Management System in PLF Integrating Image Processing for Weight Monitoring [Conference session]. Pacuit 2023 International and National Conference, Bulacan State University, Malolos Bulacan.

Banhazi, T., & Black, J. L. (2009). Precision Livestock Farming: A Suite of Electronic Systems to Ensure the Application of Best Practice Management on Livestock Farms. Australian Journal of Multi-Disciplinary Engineering, 7(1), 1-14. https://doi.org/10.1080/14488388.2009.11464794

Banhazi, T. M., Lehr, H., Black, J. L., Crabtree, H., Schofield, P., Tscharke, M., & Berckmans, D. (2012a). Precision Livestock Farming: An international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering, 5(3), 1-9. https://doi.org/10.3965/j.ijabe.20120503.001

Banhazi, T. M., Babinszky, L., Halas, V., & Tscharke, M. (2012b). Precision Livestock Farming: Precision feeding technologies and sustainable animal production. International Journal of Agricultural and Biological Engineering, 5(4), 1-8. https://doi.org/10.3965/j.ijabe.20120504.006

Benjamin, M., & Yik, S. (2019). Precision Livestock Farming in Swine Welfare: A Review for Swine Practitioners. Animals, 9(4), 133. https://doi.org/10.3390/ani9040133

Berckmans, D. (2014). Precision livestock farming technologies for welfare management in intensive livestock systems. Revue Scientifique et Technique, 33(1), 189-196. https://doi.org/10.20506/rst.33.1.2273

Bruininx, E. M. A. M., Van Der Peet-Schwering, C. M. C., Schrama, J. W., Den Hartog, L. A., Everts, H., & Beynen, A. C. (2003). The IVOG® feeding station: a tool for monitoring the individual feed intake of group-housed weanling pigs. Journal of Animal Physiology and Animal Nutrition, 85(3-4), 81-87. https://doi.org/10.1046/j.1439-0396.2001.00305.x

Burns, R. T., & Spajić, R. (2024). Precision Livestock Farming in Swine Production. In G. Kušec & I. D. Kušec (Eds.), Tracing the Domestic Pig. IntechOpen. https://doi.org/10.5772/intechopen.114845

Da Fonseca, F. N., Abe, J. M., de Alencar Nääs, I., da Silva Cordeiro, A. F., do Amaral, F. V., & Ungaro, H. C. (2020). Automatic prediction of stress in piglets (Sus Scrofa) using infrared skin temperature. Computers and Electronics in Agriculture, 168. https://doi.org/10.1016/j.compag.2019.105148

Da Silva Cordeiro, A. F., de A. Nääs, I., Oliveira, S. R. M., Violaro, F., De Almeida, A. C. M., & Neves, D. P. (2013). Understanding Vocalization Might Help to Assess Stressful Conditions in Piglets. Animals, 3(3), 923-934. https://doi.org/10.3390/ani3030923

Da Silveira, F., da Silva, S. L. C., Machado, F. M., Barbedo, J. G. A., & Amaral, F. G. (2023). Farmers' perception of the barriers that hinder the implementation of agriculture 4.0. Agricultural Systems, 208, 103656. https://doi.org/10.1016/j.agsy.2023.103656

Faltys, G. L., Young, J. M., Odgaard, R. L., Murphy, R. B., & Lechtenberg, K. F. (2014). Technical note: Validation of electronic feeding stations as a swine research tool. Journal of Animal Science, 92(1), 272-276. https://doi.org/10.2527/jas.2013-6808

Farahnakian, F., Farahnakian, F., Björkman, S., Bloch, V., Pastell, M., & Keikkonen, J. (2024). Pose Estimation of Sow and Piglets During Free Farrowing Using Deep Learning. Journal of Agriculture and Food Research, 16, 101067. https://doi.org/10.1016/j.jafr.2024.101067

Fernández, J., Fàbrega, E., Soler, J., Tibau, J., Ruiz, J. L., Puigvert, X., & Manteca, X. (2011). Feeding strategy in group-housed growing pigs of four different breeds. Applied Animal Behaviour Science, 134(3-4), 109-120. https://doi.org/10.1016/j.applanim.2011.06.018

Gaillard, C., Brossard, L., & Dourmad, J. Y. (2020). Improvement of feed and nutrient efficiency in pig production through precision feeding. Animal Feed Science and Technology, 268, 114611. https://doi.org/10.1016/j.anifeedsci.2020.114611

Garrido-Izard, M., Correa, E.-C., Requejo, J.-M., & Diezma, B. (2019). Continuous Monitoring of Pigs in Fattening Using a Multi-Sensor System: Behavior Patterns. Animals, 10(1), 52. https://doi.org/10.3390/ani10010052

Gómez, Y., Stygar, A. H., Boumans, I. J. M. M., Bokkers, E. A. M., Pedersen, L. J., Niemi, J. K., Pastell, M., Manteca, X., & Llonch, P. (2021). A Systematic Review on Validated Precision Livestock Farming Technologies for Pig Production and Its Potential to Assess Animal Welfare. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.660565

Halas, V. (2019, May 20). Perspektívák a sertések precíziós takarmányozásában. Agrárágazat. https://agraragazat.hu/hir/perspektivak-a-sertesek-precizios-takarmanyozasaban

Hartung, J., Banhazi, T., Vranken, E., & Guarino, M. (2017). European farmers' experiences with precision livestock farming systems. Animal Frontiers, 7(1), 38-44. https://doi.org/10.2527/af.2017.0107

InraPorc. (2023). https://inraporc.inrae.fr/inraporc/index_en.html

Islam, M. M., Ahmed, S. T., Mun, H.-S., Bostami, A. B. M. R., Kim, Y.-J., & Yang, C.-J. (2015). Use of thermal imaging for the early detection of signs of disease in pigs challenged orally with Salmonella typhimurium and Escherichia coli. African Journal of Microbiology Research, 9(26), 1667-1674. https://doi.org/10.5897/AJMR2015.7580

Ko, E., Jeong, K., Oh, H., Park, Y., Choi, J., & Lee, E. (2023). A deep learning-based framework for predicting pork preference. Current Research in Food Science, 6, 100495. https://doi.org/10.1016/j.crfs.2023.100495

Jiao, S., Tiezzi, F., Huang, Y., Gray, K. A., & Maltecca, C. (2016). The use of multiple imputation for the accurate measurements of individual feed intake by electronic feeders. Journal of Animal Science, 94(2), 824-832. https://doi.org/10.2527/jas.2015-9667

Maselyne, J., Saeys, W., De Ketelaere, B., Mertens, K., Vangeyte, J., Hessel, E. F., Millet, S., & Van Nuffel, A. (2014). Validation of a High Frequency Radio Frequency Identification (HF RFID) system for registering feeding patterns of growing-finishing pigs. Computers and Electronics in Agriculture, 102, 10-18. https://doi.org/10.1016/j.compag.2013.12.015

Maselyne, J., Saeys, W., Briene, P., Mertens, K., Vangeyte, J., De Ketelaere, B., Hessel, E. F., Sonck, B., & Van Nuffel, A. (2016). Methods to construct feeding visits from RFID registrations of growing-finishing pigs at the feed trough. Computers and Electronics in Agriculture, 128, 9-19. https://doi.org/10.1016/j.compag.2016.08.010

Moi, M., de A. Nääs, I., Caldara, F. R., de L. Almeida Paz, I. C., Garcia, R. G., & Cordeiro, A. F. S. (2014). Vocalization data mining for estimating swine stress conditions. Engenharia Agrícola, 34(3). https://doi.org/10.1590/S0100-69162014000300008

Nemzeti Jogszabálytár. (2023). 32/1999. (III. 31.) FVM rendelet a mezőgazdasági haszonállatok tartásának állatvédelmi szabályairól. https://net.jogtar.hu/jogszabaly?docid=99900032.fvm

Papadopoulos, G., Papantonatou, M.-Z., Uyar, H., Kriezi, O., Mavrommatis, A., Psiroukis, V., Kasimati, A., Tsiplakou, E., & Fountas, S. (2025). Economic and environmental benefits of digital agricultural technological solutions in livestock farming: A review. Smart Agricultural Technology, 10, 100783. https://doi.org/10.1016/j.atech.2025.100783

Reiners, K., Hegger, A., Hessel, E. F., Böck, S., Wendl, G., & Van den Weghe, H. F. A. (2009). Application of RFID technology using passive HF transponders for the individual identification of weaned piglets at the feed trough. Computers and Electronics in Agriculture, 68(2), 178-187. https://doi.org/10.1016/j.compag.2009.05.010

Talero-Sarmiento, L. H., Parra-Sanchez, D. T., & Lamos-Diaz, H. (2022, November 2-7). Opportunities and Barriers of Smart Farming Adoption by Farmers Based on a Systematic Literature Review [Conference session]. X. Conference on Innovation, Documentation, Education and Teaching Technologies, INNODOCT 2022, Valencia. https://doi.org/10.4995/INN2022.2022.15746

Tóth, T., & Halas, V. (2016, August 9). Precíziós állattenyésztés – a szavakon túl. Agronapló. https://www.agronaplo.hu/agrofokusz/20160809/precizios-allattenyesztes-a-szavakon-tul-37595

Tikász, I. (2023, June 9). Smart technológiák – tapasztalatok a magyarországi sertés- és baromfitartásban. Agronapló. https://www.agronaplo.hu/agrofokusz/20230609/smart-technologiak-tapasztalatok-a-magyarorszagi-sertes-es-baromfitartasban-39917

Tullo, E., Finzi, A., & Guarino, M. (2019). Review: Environmental impact of livestock farming and Precision Livestock Farming as a mitigation strategy. Science of The Total Environment, 650(2), 2751-2760. https://doi.org/10.1016/j.scitotenv.2018.10.018

Tuyttens, F. A. M., Molento, C. F. M., & Benaissa, S. (2022). Twelve Threats of Precision Livestock Farming (PLF) for Animal Welfare. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.889623

Tzanidakis, C., Simitzis, P., Arvanitis, K., & Panagakis, P. (2021). An overview of the current trends in precision pig farming technologies. Livestock Science, 249, 104530. https://doi.org/10.1016/j.livsci.2021.104530

Van Klompenburg, T., & Kassahun, A. (2022). Data-driven decision making in pig farming: A review of the literature. Livestock Science, 261, 104961. https://doi.org/10.1016/j.livsci.2022.104961

Vranken, E., & Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1), 32-37. https://doi.org/10.2527/af.2017.0106

Wageningen University & Research. (2023). Precision feed for pigs reduces environmental impact. Retrieved October 10, 2023, from https://www.wur.nl/en/research-results/research-institutes/livestock-research/show-wlr/precision-feed-for-pigs-reduces-environmental-impact.htm

Wang, S., Jiang, H., Qiao, Y., Jiang, S., Lin, H., & Sun, Q. (2022). The Research Progress of Vision-Based Artificial Intelligence in Smart Pig Farming. Sensors, 22(17), 6451. https://doi.org/10.3390/s22176541

Zhou, L., Wang, J., & Li, H. (2023). Effect of digital economy on large-scale pig farming: Evidence from China. Cogent Food & Agriculture, 9(1), 1206452. https://doi.org/10.1080/23311932.2023.2238985

Downloads

Published

2025-12-22

How to Cite

Egri, E., Tóth, T., & Szili, V. (2025). The role of precision pig farming technologies in sustainable and competitive animal husbandry (Review). Acta Agronomica Óváriensis, 66(2), 167–182. https://doi.org/10.17108/ActAgrOvar.2025.66.2.167

Issue

Section

Review