A biostimuláns mikroalgák dísznövények növekedésének és fejlődésének befolyásolására történő felhasználásának áttekintése

Szerzők

DOI:

https://doi.org/10.17108/ActAgrOvar.2024.65.1.36

Kulcsszavak:

abiotikus stressztűrés, biostimuláns, kertészet, dísznövények, organikus trágyák, mikroalgák

Absztrakt

A növény biostimulánsok koncepciója olyan anyagokra vagy mikroorganizmusokra utal, amelyeket a növény tápanyagfelvételének hatékonyságát, stressztűrésének és általános minőségének javítása érdekében használnak. A biostimulánsok közül a mikroalgák kivonatai gazdag bioaktív tartalmuk miatt keltenek egyre nagyobb figyelmet. A mikroalgák új lehetőségeket kínálnak a mezőgazdaságban, a szennyvízkezelésben, a gyógyszeriparban stb. Ezek az apró élőlények a szén-dioxid-leválasztásban, a bioremediációban és az értékes vegyületek előállításában betöltött szerepükről ismertek. A biostimulánsok különféle mechanizmusokon keresztül hatnak a növényekre, elősegítve a növekedést, a tápanyag-mobilizációt és a stresszrezisztenciát. A mikroalgákban bővelkedő aminosavak és fehérje-hidrolizátumok fokozzák a tápanyagfelvételt, és ozmoprotektánsként hatnak az olyan stresszel szemben, mint a nehézfémek és a sótartalom. A cserepes dísznövények vizuális megjelenése döntő szerepet játszik minőségük meghatározásában. Habár kutatások szerint a vásárlók preferálják a biotermesztésű növényeket, a dísznövények biotermelésének gazdasági életképessége megköveteli a termelési költségek és a piaci kereslet alapos mérlegelését. A fenntartható mezőgazdasági gyakorlatok iránti kereslet növekedésével a növényi biostimulánsok, különösen a mikroalgákból származó biostimulánsok alkalmazása ígéretes lehetőséget jelent a termelékenység növelésére, a talaj egészségének javítására és a környezeti problémák kezelésére, valamint az új Európai Uniós, növényvédő szerek alkalmazhatóságával kapcsolatos szabályzások által támasztott kihívások leküzdésére.

Hivatkozások

Abbott, L.K., Macdonald, L.M., Wong, M.T.F., Webb, M.J., Jenkins, S.N., and Farrell, M. (2018). Potential roles of biological amendments for profitable grain production. Agric. Ecosyst. Environ. 256, 34-50. https://doi.org/10.1016/j.agee.2017.12.021

Alshaal Tarek, & El-Ramady (2017). Foliar Application: from plant nutrition to biofortification; Soil and Water Department, Faculty of Agriculture. Env. Biodiv. Soil Security 1, 71-83. https://doi.org/10.21608/jenvbs.2017.1089.1006

Alvarez, A.L., Weyers, S.L., Goemann, H.M., Peyton, B.M., and Gardner, R.D. (2021). Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research 54, 3-4. https://doi.org/10.1016/j.algal.2021.102200

Gonçalves, A.L. (2021). The use of microalgae and Cyanobacteria in the improvement of agricultural practices: A review on their biofertilising, biostimulating and biopesticide roles. Applied Scinces, 11(2), 871, 6-7. https://doi.org/10.3390/app11020871

Arahou, F., Lijassi, I., Wahby, A., Rhazi, L., Arahou, M., & Wahby, I. (2022). Spirulina-based biostimulants for sustainable agriculture: Yield improvement and market trends. Bioenergy Research 15(1), 1-16. https://doi.org/10.1007/s12155-022-10537-8

Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism oxidatives and signal transduction. Annual Review of Plant Biology, 55, 373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

Atteya, A.K.G., El-Serafy, R.S., El-Zabalawy, K.M., Elhakem, A., & Genaidy, E.A.E. (2022). Brassinolide maximized the fruit and oil yield, induced the secondary metabolites, and stimulated linoleic acid synthesis of Opuntia ficus-indica oil. Horticulture 8(5), 452. https://doi.org/10.3390/horticulturae8050452

Bajguz, A., & Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem, 47(1), 1-8. https://doi.org/10.1016/j.plaphy.2008.10.002

Biostimulant Coalition (2023). Biostimulant Coalition (accessed on 9 February 2023), Retrieved from http://www.biostimulantcoalition.org/about

Bulgari, R., Cocetta, G., Trivellini, A., Vernieri, P., & Ferrante, A. (2015). Biostimulants and crop responses. Biological Agriculture & Horticulture: An International Journal for Sustainable Production Systems, 31(1), 1-17. https://doi.org/10.1080/01448765.2014.964649

Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), 306. https://doi.org/10.3390/agronomy9060306

Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., & Bertaggia, M. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet. Journal of Applied Phycology, 30(2), 1061-1071. https://doi.org/10.1007/s10811-017-1283-3

Calvo, P., Nelson, L., & Kloepper, J.W. (2014). Agricultural uses of plant biostimulants. Plant Soil, 383, 3-41. https://doi.org/10.1007/s11104-014-2131-8

Caradonia, F., Battaglia, V., Righi, L., Pascali, G., & La Torre, A. (2018). Plant biostimulant regulatory framework: prospects in Europe and current situation at international level. J. Plant Growth Regul., 38, 438-448. https://doi.org/10.3389/fpls.2018.01782

Chiaiese, P., Corrado, G., Colla, G., Kyriacou, M.C., & Rouphael, Y. (2018). Renewable sources of plant biostimulation: microalgae as a sustainable means to improve crop performance. Front Plant Sci., Dec 7, 9-10. https://doi.org/10.3389/fpls.2018.01782

Colla, G., Rouphael, Y., Lucini, L., Canaguier, R., Stefanoni, W., Fiorillo, A., and Cardarelli, M. (2016). Protein hydrolysate-based biostimulants: Origin, biological activity and application methods. ISHS Acta Horticulturae, 1148, 27-34. https://doi.org/10.17660/ActaHortic.2016.1148.3

Dehghanian F., Soltani Z., Farsinejad A., Khaksari M., Jafari E., Darakhshani A., Sabet N., & Bashiri, H. (2022). The effect of oral mucosal mesenchymal stem cells on pathological and long-term outcomes in experimental traumatic brain injury. BioMed Research International, 8. https://doi.org/10.1155/2022/4065118

Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the Iiprovement of plant tolerance to abiotic stress. Agronomy, 9(6), 335. https://doi.org/10.3390/agronomy9060335

Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic., 196, 3-14. https://doi.org/10.1016/j.scienta.2015.09.021

Fageria, N.K., Filho, M.P.B., Moreira, A., & Guimarães, C.M. (2009) Foliar fertilization of crop plants. J. Plant Nutr., 32, 1044-1064. https://doi.org/10.1080/01904160902872826

Fan, Y., Li, H., & Miguez-Macho, G. (2013). Global patterns of groundwater table depth. Science 32(6), 940. https://doi.org/10.1126/science.1229881

Gitau, M.M., Farkas, A., Ördög, V., & Maróti, G. (2022). Evaluation of the biostimulant effects of two Chlorophyta microalgae on tomato (Solanum lycopersicum). Journal of Cleaner Production, 364, 8-15. https://doi.org/10.1016/j.jclepro.2022.132689

Gill, S.S. & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology Biochem, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

Graham, L.E., Graham, J.M. & Wilcox, L.W. (2009). Algae. 2nd ed. 540-600, ISBN 10: 0321559657

Hawkins, M.R. (2010). Consumer interest and compost substrate management of organic and sustainable plant. Electronic Theses and Dissertations, 312-350.

Hempel, S., Newberry, S.J., & Maher, A.R. (2012). Probiotics for the prevention and treatment of antibiotic-associated diarrhea: A systematic review and meta-analysis, JAMA, 307(18), 1959-1969. https://doi.org/doi:10.1001/jama.2012.3507

Horváth, N., Molnár, Z., & Ördög, V. (2016). Az Anabaena cianobaktérium nemzetség biotechnológiai felhasználása és taxonómiai áttekintése. Botanikai Közlemények 103(1), 135-152. https://doi.org/10.17716/BotKozlem.2016.103.1.135

Hong, J., Wang, C., Wagner, D.C., Gardea-Torresdey, J.L., He, F., & Rico, C.M. (2021). Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano 8(5), 1196-1210. https://doi.org/10.1039/D0EN01129K

Kapoore, R.V., Wood, E.E., & Llewellyn, C.A. (2021). Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol Advances, 49, 5-8. https://doi.org/10.1016/j.biotechadv.2021.107754

Karthikeyan, N., Prasanna, R., Sood, A., Jaiswal, P., Nayak, S., & Kaushik, B. (2009). Physiological characterization and electron microscopic investigation of cyanobacteria associated with wheat rhizosphere. Folia Microbiologica 54(1), 43-51. https://doi.org/10.1007/s12223-009-0007-8

Katona, S., Horváth, N., Molnár, Z., & Ördög, V. (2018). Extracellular polysaccharides in twenty Chlamydomonas strains of the Mosonmagyaróvár Algal Culture collection. Acta Agronomica Óváriensis, 59(1), 62-81. Retrieved from https://epa.oszk.hu/03100/03114/00021/pdf/EPA03114_acta_agronomica_ovariensis_2018_01_062-081.pdf

Khan, W., Rayirath, U.P., & Subramanian, S. (2009). Seaweed extracts as biostimulants of plant growth and development. J Plant Growth Regul, 28, 386-399. https://doi.org/10.1007/s00344-009-9103-x

Khare, S., Singh, A., Niharika, Amist, N., Azim, Z., & Singh, N.B. (2023). Secondary metabolites interference on potential of Solanum lycopersicum grown under UV-B stress and its impact on developmental attributes of Capsicum annuum. Plant Stress, 8, 100-167. https://doi.org/10.1016/j.stress.2023.100167

Lee, S.M. & Ryu, C.M. (2021). Algae as new kids in the beneficial plant microbiome. Front. Plant Sci., 12, 20-31. https://doi.org/10.3389/fpls.2021.599742

Ma, Z., Cheah, W.Y., Ng, I.S., Chang, J.S., Zhao, M., & Show, P.L. (2022). Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. Trends Biotechnol, 40(12), 1439-1453. https://doi.org/10.1016/j.tibtech.2022.09.002

Mógor, Á.F., Ördög, V., Lima, G.P.P., Molnár, Z., & Mógor, G. (2018). Biostimulant properties of cyanobacterial hydrolysate related to polyamines. J. Appl. Phycology 30(1), 453-460. https://doi.org/10.1007/s10811-017-1242-z

Mutale-joan, C., Redouane, B., Najib, E., Yassine, K., Lyamlouli, K., Laila, S., Zeroual, Y., & El Hicharm, A. (2020). Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum Lycopersicum L. Scientific Reports, 10, 15-30. https://doi.org/10.1038/s41598-020-59840-4

Noordergraaf, C.V. (1994). Production and marketing of high quality plants. ISHS Acta Horticulturae, 353 (11), 134-148. https://doi.org/10.17660/ActaHortic.1994.353.11

Ördög, V. (2015). Mikroalgák biotechnológiai alkalmazása a növénytermesztésben és növényvédelemben (dissertation). Hungarian Academy of Sciences, 172, 98-99. Retrieved from https://core.ac.uk/download/pdf/35136574.pdf

Ördög, V., Stirk, W.A., Bálint, P., Lovász, Cs., Pulz, O., & van Staden, J. (2013). Lipid productivity and fatty acid composition in Chlorella and Scenedesmus strains grown in nitrogen-stressed conditions. Journal of Applied Phycology, 25(1), 233-243. https://doi.org/10.1007/s10811-012-9857-6

Ördög, V. & Pulz, O. (1996). Diurnal changes of cytokinin-like activity in a strain of Arthronema africanum (Cyanobacteria), determined by bioassay. Algological Studies, 82, 57-67. https://doi.org/10.1127/algol_stud/82/1996/57

Piotrowska, A. & Bajguz, A. (2011). Conjugates of abscisic acid, brassinosteroids, ethylene, gibberellins, and jasmonates. Phytochemistry, 72(17), 2097-2112. https://doi.org/10.1016/j.phytochem.2011.08.012

Plaza, B.M., Gómez-Serrano, C., Acién-Fernández, F.G., & Jiménez-Becker, S. (2018). E-ect of microalgae hydrolysate foliar application (Arthrospira platensis and Scenedesmus sp.) on Petunia x hybrida growth. J. Appl. Phycol, 30, 2359-2365. https://doi.org/10.1007/s10811-018-1427-0

Pradeep, V. & Maulin P.S. (2021). Phycology-based approaches for wastewater treatment and resource recovery. Taylor & Francis Books, ISBN 9781003155713, 309, 7-8. https://doi.org/10.1201/9781003155713

Priyanka, P., Raman, K., Yograj, N., & Vidyashankar, S. (2023). Microalgae as next generation plant growth additives: Functions, applications, challenges and circular bioeconomy based solutions. Front. Plant Sci., 14, 10-12. https://doi.org/10.3389/fpls.2023.1073546

Puglisi, I., Barone, V., Fragalà, F., Stevanato, P., Baglieri, A., & Vitale, A. (2020). Effect of microalgal extracts from chlorella vulgaris and scenedesmus quadricauda on germination of beta vulgaris seeds. Plants, 9(6), 675. https://doi.org/10.3390/plants9060675

Puglisi, I., La Bella, E., Rovetto, E.I., Stevanato, P., Fascella, G., & Baglieri, A. (2022). Morpho-biometric and biochemical responses in lettuce seedlings treated by different application methods of chlorella vulgaris extract: foliar spray or root drench? J. Appl. Phycology, 34(2), 889-901. https://doi.org/10.1007/s10811-021-02671-1

Rajewska, I., Talarek, M., & Bajguz, A. (2016). Brassinosteroids and response of plants to heavy metals action. Front. Plant Sci., 7, 629. https://doi.org/10.3389/fpls.2016.00629

Pavlova, V., Stoyneva, M., Babica, P., Kohoutek, J. & Bratanova, Z. (2007). Microcystins contamination and Cyanoprokaryote blooms in some coastal Bulgarian Wetlands. Conference Preprint Book, BULAQUA 2007, Second International Conference and Exhibition of Water Resources, Technologies and Services, Sofia, Bulgaria, 221-226. Retrieved from https://www.researchgate.net/publication/301683925_Microcystins_contamination_and_cyanoprokaryote_blooms_in_some_coastal_Bulgarian_wetlands

Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology Advances, 36(4), 1255-1273. https://doi.org/10.1016/j.biotechadv.2018.04.004

Rippy, J.F.M., Peet, M.M., Louws, F.J., Nelson, P.V., Orr, D.B., & Sorensen, K.A. (2004). Plant development and harvest yield of greenhouse tomatoes in six organic growing systems. American Society for Horticultural Science, 39(2), 223-229. https://doi.org/10.21273/HORTSCI.39.2.223

Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9(4), 192. https://doi.org/10.3390/agronomy9040192

Schmidt, R.E., Ervin, E.H., & Zhang, X. (2003). Questions and Answers about Biostimulants. Hi Tech Ag Solutions, GCM, 91-94. Retrieved from https://hightestag.com/wp-content/uploads/2019/05/BiostimulantsQA.pdf

Singh, P., Gupta, S.K., Guldhe, A., Rawat, I., & Bux, F. (2015). Microalgae isolation and basic culturing techniques, Institute for Water and Wastewater Technology, Durban University of Technology, Handbook of Marine Microalgae – Biotechnology Advances 2015, 43-54. https://doi.org/10.1016/B978-0-12-800776-1.00004-2

Singh, R.P. (2017). Improving seed systems resiliency at local level through participatory approach for adaptation to climate change. Adv. Plants & Agricultural Research, 6(1), 15-16. https://doi.org/10.15406/apar.2017.06.00200

Singhal, R.K., Fahad, S., Kumar, P., Choyal, P., Javed, T., & Jinger, D. (2022). Beneficial elements: New Players in improving nutrient use efficiency and abiotic stress tolerance. University Of Tasmania. Journal contribution, 100, 237-265. https://doi.org/10.1007/s10725-022-00843-8

Soares, C., Sousa, A., Pinto, A., Azenha, M., Teixeira, J., Azevedo, R.A., & Fidalgo, F. (2016). Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ. Exp. Bot., 122, 115-125. https://doi.org/10.1016/j.envexpbot.2015.09.010

Somogyi, B., Felföldi, T., Boros, E., Szabó, A., & Vörös, L. (2022). Where the little ones play the main role - picophytoplankton predominance in the soda and hypersaline Lakes of the Carpathian Basin. Microorganisms, 10(4), 2-3. https://doi.org/10.3390/microorganisms10040818

Somogyi, B., Felföldi, T., Solymosi, K., Flieger, K., Márialigeti, K., Böddi, B., & Vörös, L. (2013). One step closer to eliminating the nomenclatural problems of minute coccoid green algae: Pseudochloris wilhelmii, gen. et sp. nov. (Trebouxiophyceae, Chlorophyta). European Journal of Phycology, 48(4), 427-436. https://doi.org/10.1080/09670262.2013.854411

Suchithra, M.R., Muniswami, D.M., Sri, M.S., Usha, R., Rasheeq, A.A., & Preethi, B.A. (2022). Effectiveness of green microalgae as biostimulants and biofertilizer through foliar spray and soil drench method for tomato cultivation. South African Journal of Botany, 146, 740-750. https://doi.org/10.1016/j.sajb.2021.12.022

Szőllősi, R. (2014). Superoxide dismutase (SOD) and abiotic stress tolerance in plants: an overview. In: Ahmad, P. (Ed.), Oxidative Damage to Plants: Antioxidant Networks and Signaling. Elsevier Inc., USA, 89-129. https://doi.org/10.1016/B978-0-12-799963-0.00003-4

Treadwell, D., Hochmuth, G., Hochmuth, R., Simonne, E.H., Sargent, S.A., Davis, L.L., Laughlin, W.L., & Berry, A.D. (2011). Organic Fertilization Programs for Greenhouse Fresh-cut Basil and Spearmint in a Soilless Media Trough System. Horttechnology, 21, 162-169. Retrieved from https://api.semanticscholar.org/CorpusID:87280389

Van Oosten, M.J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bio effectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol., 4(5), 7-14. https://doi.org/10.1186/s40538-017-0089-5

Wang, Q., Chen, J., Stamps, R.H., @ Li, Y. (2005). Correlation of visual quality grading and SPAD reading of green-leaved foliage plants. J. Plant Nutr., 28, 1215-1225. https://doi.org/10.1081/PLN-200063255

Waraich, E.A., Ahmad, Z., Ahmad, R., Saifullah, & Ashraf, M.Y. (2015). Foliar applied phosphorous enhanced growth, chlorophyll contents, gas exchange attributes and PUE in wheat (Triticum aestivum L.). Journal of Plant Nutrition, 38(12), 1929-1943. https://doi.org/10.1080/01904167.2015.1043377

Yakhin, O.I., Lubyanov, A.A., Yakhin, I.A., & Brown, P.H. (2017). Biostimulants in plant science: A Global Perspective. Frontiers in plant science, 7, 22-24. https://doi.org/10.3389/fpls.2016.02049

Ye, L., Zhao, X., Bao, E., Li, J., Zou, Z., & Cao, K. (2020). Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep., 10(1), 1-11. https://doi.org/10.1038/s41598-019-56954-2

Youssef, S.M., El-Serafy, R.S., Ghanem, K.Z., Elhakem, A., & Abdel Aal, A.A. (2022). Foliar spray or soil drench: microalgae application impacts on soil microbiology, morpho-physiological and biochemical responses, oil and fatty acid profiles of chia plants under alkaline stress. Biology, 11(12), 1844. https://doi.org/10.3390/biology11121844

Zamljen, T., Hudina, M., & Veberič, R. (2021). Biostimulative effect of amino acids and green algae extract on capsaicinoid and other metabolite contents in fruits of Capsicum spp. Chemical and Biological Technologies in Agriculture, 8(63), 3-6. https://doi.org/10.1186/s40538-021-00260-5

Zhang, X. & Schmidt, R.E. (1997). The impact of growth regulators on alpha-tocopherol status of water-stressed Poa pratensis L. Int. Turfgrass Soc. Res. J., 8, 1364-2137. Retrieved from https://www.humintech.com/fileadmin/content_images/agriculture/applications/turf_and_meadow/Influence_of_Plant_Growth_Regulators_on.pdf

Zulfiqar, F., Younis, A., Finnegan, P.M., & Ferrante, A. (2020). Comparison of soaking corms with moringa leaf extract alone or in combination with synthetic plant growth regulators on the growth, physiology and vase life of sword lily. Plants, 9(11), 1590. https://doi.org/10.3390/plants9111590

##submission.downloads##

Megjelent

2024-07-12

Hogyan kell idézni

Németh, A., Horváth, N., Katona, S., & Molnár, Z. (2024). A biostimuláns mikroalgák dísznövények növekedésének és fejlődésének befolyásolására történő felhasználásának áttekintése. Acta Agronomica Óváriensis, 65(1), 36–55. https://doi.org/10.17108/ActAgrOvar.2024.65.1.36

Folyóirat szám

Rovat

Kísérletes tanulmányok