Pectobacterium carotovorum subsp. carotovorum Causing Severe Soft Rot in Celeriac on a Family Farm in Slovakia
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.2.32Keywords:
celeriac, Pectobacterium carotovorum subsp. carotovorum, bacterial disease, 16S rRNAAbstract
In 2023 and 2024, soft rot caused significant losses (20-50 %) in celeriac (Apium graveolens var. rapaceum) on a family farm in southern Slovakia. Affected tubers exhibited watery rot, tissue collapse, and a foul odour, particularly evident 12-24 hours after washing. Four bacterial isolates were obtained from the margin of healthy and diseased tissue. All isolates were Gram-negative. Colony morphology and growth characteristics were recorded on potato dextrose agar. Pathogenicity was confirmed by Koch’s postulates using detached celeriac tuber slices; three isolates induced rapid soft rot within 3 days, whereas one isolate produced no symptoms. A 1300 bp fragment of the 16S rRNA gene was amplified with universal primers 63F/1389R, bidirectionally sequenced, and compared with NCBI databases. Three pathogenic isolates were identified as Pectobacterium carotovorum subsp. carotovorum (99.45-99.92 % identity to strains from potato and Chinese cabbage, from China, Iraq and South-Korea). Phylogenetic analysis using the neighbour-joining method placed them within the P. carotovorum clade. The non-pathogenic isolate was identified as Stenotrophomonas sp. High infection rates in fields previously free of root crops suggest contamination originated in greenhouse seedling production. Replacement of greenhouse soil, disinfection of seedling trays, and strict hygiene during post-harvest washing are recommended to prevent recurrence.
References
Agronapló. (2024, January 3). Megéri zellert termeszteni [It is worth growing celeriac]. https://www.agronaplo.hu/agrarhirek/20240103/megeri-zellert-termeszteni-30403
Aizawa, S.-I. (2014). The flagellar world: Electron microscopic images of bacterial flagella and related surface structures from more than 30 species. In Pectobacterium carotovorum – Subpolar hyper-flagellation (pp. 58-59). Academic Press.
Bolton, M. D., Thomma, B. P. H. J., & Nelson, B. D. (2006). Sclerotinia sclerotiorum (Lib..) de Bary: Biology and molecular traits of a cosmopolitan pathogen. Molecular Plant Pathology, 7(1), 1-16. https://doi.org/10.1111/j.1364-3703.2005.00316.x
Bruznican, S., De Clercq, H., Eeckhaut, T., Van Huylenbroeck, J., & Geelen, D. (2020). Celery and celeriac: A critical view on present and future breeding. Frontiers in Plant Science, 10, 1699. https://doi.org/10.3389/fpls.2019.01699
Cserni, I., Pető, J., & Hüvely, A. (2015). A zeller növekedésének és egyes értékmérő paramétereinek vizsgálata [Examination of celery growth and certain quality parameters]. Gradus, 2(2), 236-241. https://gradus.kefo.hu/archive/2015-2/2015_2_AGR_003_Cserni.pdf
Davidsson, P. R., Kariola, T., Niemi, O., & Palva, E. T. (2013). Pathogenicity of and plant immunity to soft rot pectobacteria. Frontiers in Plant Science, 4, 191. https://doi.org/10.3389/fpls.2013.00191
FruitVeb. (2020, May 29). Zöldségtermesztés II. rész [Vegetable production II]. FruitVeB Bulletin. https://fruitveb.hu/fruitveb-bulletin-2019-zoldsegtermesztes-ii-resz
Glits, M., & Folk, Gy. (2000a). A zeller szeptóriás levélfoltossága [Septoria leaf spot of celery]. In Kertészeti növénykórtan [Horticultural plant pathology] (pp. 443-444). Mezőgazda Kiadó.
Glits, M., & Folk, Gy. (2000b). A sárgarépa botrítiszes rothadása [Botrytis rot of carrot]. In Kertészeti növénykórtan [Horticultural plant pathology] (pp. 431-432). Mezőgazda Kiadó.
Hollings, M. (1964). Some properties of five viruses of celery (Apium graveolens L.) in Britain. Journal of Horticultural Science, 39(2), 130-141. https://doi.org/10.1080/00221589.1964.11514100
Honma, S., & Lacy, M. L. (1980). Hybridization between pascal celery and parsley. Euphytica, 29, 801-805. https://doi.org/10.1007/BF00023227
Kerek, M., & Hartmann, K. (2018). A sárgarépa és a petrezselyem növényvédelmi technológiája [Plant protection technology of carrot and parsley]. Növényvédelem, 54(3), 118-130.
Kimura, M. (1981). Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America, 78(1), 454-458. https://doi.org/10.1073/pnas.78.1.454
Koike, S. T., Davis, R. M., & Turini, T. A. (2009). UC IPM pest management guidelines: Celery (pp. 1-52). University of California Agriculture and Natural Resources.
Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer, S. V., Machado, M. A., Toth, I., Salmond, G., & Foster, G. D. (2012). Top 10 plant pathogenic bacteria in molecular plant pathology. Molecular Plant Pathology, 13(6), 614-629. https://doi.org/10.1111/j.1364-3703.2012.00804.x
Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., Dymock, D., & Wade, W. G. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795-799. https://doi.org/10.1128/AEM.64.2.795-799.1998
Ochoa, O., & Quiros, C. F. (1989). Apium wild species: Novel sources for resistance to late blight in celery. Plant Breeding, 102(4), 317-321. https://doi.org/10.1111/j.1439-0523.1989.tb01262.x
Pemberton, A. W., & Frost, R. R. (1986). Virus diseases of celery in England. Annals of Applied Biology, 108(2), 319-331. https://doi.org/10.1111/j.1744-7348.1986.tb07653.x
Poole, R. F. (1922). Celery mosaic. Phytopathology, 12, 151-154.
Quiros, C. F. (1993). Celery – Apium graveolens L. In G. Kalloo & B. O. Bergh (Eds.), Genetic improvement of vegetable crops (pp. 523-534). Pergamon Press.
Raid, R. N. (2004). Celery diseases and their management. In Diseases of fruits and vegetables: Volume I (pp. 441-453). Kluwer Academic Publishers.
Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., Berg, G., van der Lelie, D., & Dow, J. M. (2009). The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nature Reviews Microbiology, 7, 514-525. https://doi.org/10.1038/nrmicro2163
Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Shehata, S. M., Abdel-Azem, H.-S., El-Yazied, A. A., & El-Gizawy, A. M. (2011). Effect of foliar spraying with amino acids and seaweed extract on growth, chemical constituents, yield and its quality of celeriac plant. European Journal of Scientific Research, 58(2), 257-265.
Shi, Y., Jin, Z., Meng, X., Wang, L., Xie, X., Chai, A., & Li, B. (2020). Development and evaluation of a loop-mediated isothermal amplification assay for the rapid detection and identification of Pectobacterium carotovorum on celery in the field. Horticultural Plant Journal, 6(5), 313-320. https://doi.org/10.1016/j.hpj.2020.07.004
Sultana, F., & Hossain, M. M. (2021). Diseases of vegetables caused by Phoma spp. In M. Rai, B. Zimowska, & G. J. Kövics (Eds.), Phoma: Diversity, taxonomy, bioactivities, and nanotechnology (pp. 91-119). Springer. https://doi.org/10.1007/978-3-030-81218-8_6
Suslow, T. V., Schroth, M. N., & Isaka, M. (1981). Application of a rapid method for Gram differentiation of plant pathogenic and saprophytic bacteria without staining. Phytopathology, 72(7), 917-918. https://doi.org/10.1094/Phyto-72-917
Takácsné Hájos, M. (2015). A termesztési mód és a bioaktív anyagok vizsgálatának eredményei különböző gyökérzöldség fajoknál [Results of cultivation methods and bioactive compounds in various root vegetables]. Debreceni Szemle, 1, 20-29. https://epa.oszk.hu/04600/04620/00029/pdf/EPA04620_debreceni_szemle_2015_01_020-029.pdf
Zhu, X., Gao, G.-X., & Wang, X. (2011). Overview of studies on celery late blight disease. China Vegetables, 1(14), 1-8.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
