Evaluation of Body Measurements of Limousin Young Bulls by Principal Component Analysis

Authors

  • János Tőzsér Albert Kázmér Faculty of Agricultural and Food Sciences of Széchenyi István University Department of Animal Science https://orcid.org/0000-0002-5632-1765
  • Natasa Fazekas Hungarian University of Agriculture and Life Sciences, Szent István Campus Institute of Animal Husbandry https://orcid.org/0009-0002-4184-4616
  • Márton Demény Association of Hungarian Limousin and Blonde d’Aquitaine Breeders
  • Márton Szűcs Association of Hungarian Limousin and Blonde d’Aquitaine Breeders

DOI:

https://doi.org/10.17108/ActAgrOvar.2024.65.1.25

Keywords:

Limousin beef cattle, young bulls, principal component analysis, body measurements

Abstract

The aim of this study was to analyse how body measurements, live weight and age in young Limousin bulls are interrelated, and what ratio of the phenotype variance can be explained by a group of them, so what traits should be considered in early selection.

Body measures of 8-9 months old Limousin young bulls (n=610) in two consecutive years from 32 Hungarian farms were registered, and their covariance structure was studied by principal component analysis. Two components were defined, explaining 71.58% of the total variance. The first component was composed of live weight and body measures; the second component contained age. Live weight, withers’ height and hip height measures had highly definitive effect in the first component. Length of back, width at shoulders, and width at hip bone measurements had lower, but still significant effects. Eigenvalue of the first component had been very high, with 58.36% eigenvalue variance. Only effect of age proved to be highly significant in the second component, with an eigenvalue variance 13.22%. As age contributes less, if correction is needed for transforming results of individuals comparable, then it is advised to be based on live weight. Registered body measurements could be considered together in selection decisions, not needless to take all separately.

References

Abreu, B.A., Magalhães, C.J., Duayer, E., Machado, S.H.M., & da Silva, D.A. (2015). Variação da medida torácica obtida com a fita métrica tradicional com fator de correção e com a fita de pesagem para bovinos. Acta Biomedica Brasiliensia, 6(2), 42-48. Retrieved from https://dialnet.unirioja.es/descarga/articulo/5669130.pdf

Augspurger, N.R. & Ellis, M. (2002). Weighing affects short-term feeding patterns of growing-finishing pigs. Canadian Journal of Animal Science, 82, 445-448.

Boiligon, A.A., Vicente, I.S., Vaz, R.Z., Campos, G.S., Souza, F.R.P., Carvalheiro, R., & Albuquerque, L.G. (2016). Principal component analysis of breeding values for growth and reproductive traits and genetic association with adult size in beef cattle. Journal of Animal Science, 94(12), 5014-5022. https://doi.org/10.2527/jas.2016-0737

Bonifazi, R., Calus, M.P.L., ten Napel, J., Veerkamp, R.F., Michenet, A., Savoia, S., Cromie, A. & Vandenplas, J. (2022). International single-step SNPBLUP beef cattle evaluations for Limousin weaning weight. Genetics Selection Evolution, 54(1), 2-18. https://doi.org/10.1186/s12711-022-00748-0

Brown, J.E., Brown, C.J., & Butts, W.T. (1973). Evaluate relationships among immature measures of size, shape and performance of beef bulls I: Principal components as measures of size and shape in young Hereford and Angus bulls. Journal of Animal Science, 36(6), 1010-1020. https://doi.org/10.2527/jas1973.3661010x

Brown, W.L., Shrode, R.R. (1971). Body measurements of beef calves and traits of their dams to predict calf performance and body composition as indicated by fat thickness and condition score. Journal of Animal Science, 33(1), 7-12. https://doi.org/10.2527/jas1971.3317

Castano, D.P., Sardinha, L.A., Maiorano, A.M., Venturini, G.C., Nogueira, C.S., Ospina, A.M.T., & Silva, J.A.V. (2013). Principal components analysis for productive and reproductive traits of Holstein cattle. Proceedings of International Meeting of Advances in Animal Science, 45139.

Fischer, A., Luginbühl, T., Delattre, L., Delourad, J.M., & Faverdin, P. (2015). Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in Holstein dairy cows. Journal of Dairy Science, 98, 4465-4476. https://doi.org/10.3168/jds.2014-8969

Gunawan, A. & Jakaria (2010). Application of linear body measurements for predicting weaning and yearling weight of Bali cattle. Animal Production, 12(3), 163-168.

Hammack, G.H., Shrode, R.R. (1986). Calfhood weights, body measurements and measures of fatness versus criteria of overall size and shape for predicting yearling performance in beef cattle. Journal of Animal Science, 63, 447-452. https://doi.org/10.2527/jas1986.632447X

Kongsro, J. (2014). Estimation of pig weight using a Microsoft Kinect prototype imaging system. Computerization and Electronics in Agriculture, 109, 32-35. https://doi.org/10.1016/j.compag.2014.08.008

Lewis, J., Abas, Z., Dabousis, C., Lykidis, D., Paschou, P., & Drineas, P. (2011). Tracing cattle breeds with principal components analysis ancestry informative SNPs. PLOS ONE, 6(4), https://doi.org/10.1371/journal.pone.0018007

Li, J., Li, Q., Ma, W., Xue, X., Zhao, C., Tulpan, D., & Yang, S.X. (2022). Key region extraction and body dimension measurement of beef cattle using 3D point clouds. Agriculture, 12, 1012. https://doi.org/10.3390/agriculture12071012

Magyar Charolais Tenyésztők Egyesülete. (n.d.). Tenyésztési program. Retrieved June 29, 2023, from https://www.charolais.hu/ujweb/index.php/hu/szabalyzatok/tenyesztesi-program

Marle-Köster, E., Mostert, B.E., & van der Westhuizen, J. (2000). Body measurements as selection criteria for growth in South African Hereford cattle. Arch. Anim. Breed., 43, 5-16. https://doi.org/10.5194/aab-43-5-2000

McCurly, J.R. & McLaren, J.B. (1981). Relationship of body measurements, weight, age and fatness to size and performance in beef cattle. Journal of Animal Science, 52(3), 493-499. https://doi.org/10.2527/jas1981.523493X

Mello, R.R.C., Sinedino, L.DP., Ferreira, J.E., Sousa, S.L.G., & Mello, M.R.B. (2020). Principal component and cluster analyses of production and fertility traits in Red Sindhi dairy cattle breed in Brazil. Trop Anim Health Prod 52, 273–281. https://doi.org/10.1007/s11250-019-02009-7

Miekley, B., Traulsen, I., & Krieter, J. (2013). Principal component analysis for the early detection of mastitis and lameness in dairy cows. Journal of Dairy Research, 80(3), 335-343. https://doi.org/10.1017/S0022029913000290

Moravčíková, N., Kukučková, V., Mészáros, M., Sölkner, J., & Kadlečík, O. (2017). Assessing footprints of natural selection through PCA analysis in cattle. Acta Fytotechnica et Zootechnica, 20(01), 23-27. https://doi.org/10.15414/afz.2017.20.01.23-27

Orheruata, A.M., Olutogun, O. (1994). Pre- and post-weaning phenotypic relationships between some N’Dama cattle linear measurements in the tropics. Nigerian Journal of Animal Production, 21, https://doi.org/10.51791/njap.v21i1.1142

Ouédraogo, D., Soudré, A., Ouédraogo-Koné, S., Zoma, B.L., Yougbaré, B., Khayatzadeh, N., Burger, P.A., Mészáros, G., Traoré, A., Mwai, O.A., Wurzinger, M., & Sölkner, J. (2020). Breeding objectives and practices in three local cattle breed production systems in Burkina Faso with implication for the design of breeding programs. Livestock Science, 232. https://doi.org/10.1016/j.livsci.2019.103910

Petherick, J.C., Doogan, V.J., Venus, B.K., Holroyd, R.G., & Olsson, P. (2009). Quality of handling and holding yard environment, and beef cattle temperament: 2. Consequences for stress and productivity. Applied Animal Behaviour Science, 120, 28–38. https://doi.org/10.1016/j.applanim.2009.05.009

Pundir, R.K., Singh, P.K., & Dangi, P.S. (2011). Factor analysis of biometric traits of Kankrej Cows to explain body conformation. Asian-Australasian Journal of Animal Sciences, 24(4), 449-456. https://doi.org/10.5713/ajas.2011.10341

Putra, W.P., Said, S., & Arifin, J. (2020). Principal component analysis is important for describing the body measurements and body indices in the Pasundan cows. Black Sea Journal of Agriculture, 3(1), 49-55. Retrieved from https://dergipark.org.tr/en/pub/bsagriculture/issue/49364/582918

Sales, M.F.L., Paulino, M.F., Valadares Filho, S.C., Paulino, P.V.R., Porto, M.O., & Couto, V.R.M. (2009). Composição corporal e requisitos energéticos de bovinos de corte sob suplementação em pastejo. Revista Brasileira de Zootecnia, 38(7), 1355-1362. https://doi.org/10.1590/S1516-35982009000700027

Shi, C., Teng, G., & Li, Z. (2016). An approach of pig weight estimation using binocular stereo system based on LabVIEW. Computerization and Electronics in Agriculture, 129, 37-43. https://doi.org/10.1016/j.compag.2016.08.012

Sváb, J. (1979). Multivariate methods in biometry. (Többváltozós módszerek a biometriában), Budapest, Magyarország: Mezőgazdasági Kiadó. ISBN 963-230-011-4

Tőzsér, J., Nagy, A., Gerszi, K., Mézes, M., Domokos, Z., Kertész, I., & Fekete, T. (1995). Changes in phenotypic relationship of scrotal circumference with chest width, chest depth and liveweight in Charolais young bulls as a function of age. Hungarian Journal of Animal Production, 44(3), 203-210.

Tőzsér, J., Balika, S., Bedő, S., Kovács, A., Gábrielné Tőzsér, Gy., & Mihályfi, I. (1997). Evaluation of self performance test results in Limousin young breeding bulls by factor analysis. Hungarian Journal of Animal Production, 46(6), 493-498.

Tőzsér, J., Domokos, Z., Alföldi, L. Sváb, L., Miliczki, L. (2000a): The relationship of body measurements and conformation traits in Charolais weaned bull calves. (in Hungarian), Hungarian Journal of Animal Production, 49(4), 301-312.

Tőzsér, J., Domokos, Z., Rusznák, J., Szelényi, L. & Gábrielné Tőzsér, Gy.Ms. (2000b): Data on body measurements of Charolais cows. (in Hungarian), Hungarian Journal of Animal Production, 49(3), 207-216.

Tőzsér, J., Domokos, Z. & Alföldi, L. (2000c): A proposition to correct some body measurements in Charolais cow. (in Hungarian), Hungarian Journal of Animal Production, 49(1), 13-22.

Tőzsér, J., Hidas, A., Holló, I., Holló, G., Szűcs, E., & Bölcskey, K. (2001). Estimation of lean meat content in carcasses of cow by half carcass weight, weight of kidney and trimmed fat, and adipocyte diameter. Acta Agronomica Óváriensis, 43(2), 135-142.

Wongsriworaphon, A., Arnonkijpanich, B., & Pathumnakul, S. (2015). An approach based on digital image analysis to estimate the live weights of pigs in farm environments. Computerization and Electronics in Agriculture, 115, 26-33. https://doi.org/10.1016/j.compag.2015.05.004

Xu, L., Luo, H., Zhang, X., Lu, H., Zhang, M., Ge, J., & Wang, Y. (2022). Factor analysis of genetic parameters for body conformation traits in dual-purpose Simmental cattle. Animals, 12(18), 2433. https://doi.org/10.3390/ani12182433

Zarnecki, A., Ronningen, K., & Sobu, H. (1985). The principal component analysis of the incidence of diseases in Norwegian Red Cattle. Journal of Animal Breeding and Genetics, 102(1-5), https://doi.org/10.1111/j.1439-0388.1985.tb00678.x

Downloads

Published

2024-07-12

How to Cite

Tőzsér, J., Fazekas, N., Demény, M., & Szűcs, M. (2024). Evaluation of Body Measurements of Limousin Young Bulls by Principal Component Analysis. Acta Agronomica Óváriensis, 65(1), 25–35. https://doi.org/10.17108/ActAgrOvar.2024.65.1.25

Issue

Section

Kísérletes tanulmányok