Evolution and applications of the electronic nose: I. History and types of electronic nose
DOI:
https://doi.org/10.17108/ActAgrOvar.2024.65.2.18Keywords:
aromas, olfaction, electronic nose systems, data analysisAbstract
Flavourings are volatile compounds that are perceived by the human sense of smell and can be characterised by different qualities. Flavourings are made up of many different compounds and it is the combination of these compounds that determines the unique properties of the flavour. Smell is a biological process in which the receptors in the nose detect volatile compounds and the brain processes this information. Although olfaction has inherent limitations, such as subjectivity and difficulty of reproducibility, the development of electronic-nose systems is important for the analysis of aromas and the identification of scents. Different types of electronic nose are based on the reaction of different sensing materials with chemical vapours. The most common types include metal oxide semiconductor (MOS) sensors, conductive polymers (CP) and acoustic wave sensors. Data analysis methods, which have evolved with the development of the electronic nose, play a key role in the detection and interpretation of odours and smells. The development of data analysis in electronic noses represents a significant advance in the interpretation of odours and smells and contributes to their widespread application in industry and research.
References
Bhattacharyya, N., & Bandhopadhyay, R. (2010). Electronic nose and electronic tongue. In Nondestructive Evaluation of Food Quality: Theory and Practice (pp. 73-100). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-15796-7_4
Buck, T. M., Allen, F. G., & Dalton, J. V. (1965). Detection of chemical species by surface effects on metals and semiconductors. Murray Hill, NJ, USA: Bell Telephone Laboratories.
Burgués, J., & Marco, S. (2018). Low power operation of temperature-modulated metal oxide semiconductor gas sensors. Sensors, 18(2), 339. https://doi.org/10.3390/s18020339
Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials science and Engineering: B, 229, 206-217. https://doi.org/10.1016/j.mseb.2017.12.036
Doty, R. L. (2015). Handbook of olfaction and gustation. John Wiley & Sons. https://doi.org/10.1002/9781118971758
Dravnieks, A., & Trotter, P. J. (1965). Polar vapour detector based on thermal modulation of contact potential. Journal of Scientific Instruments, 42(8), 624. https://doi.org/10.1088/0950-7671/42/8/335
El Hadi, M. A. M., Zhang, F. J., Wu, F. F., Zhou, C. H., & Tao, J. (2013). Advances in fruit aroma volatile research. Molecules, 18(7), 8200-8229. https://doi.org/10.3390/molecules18078200
Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators B: Chemical, 18(1-3), 210-211. https://doi.org/10.1016/0925-4005(94)87085-3
Go, D. B., Atashbar, M. Z., Ramshani, Z., & Chang, H. C. (2017). Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective. Analytical methods, 9(28), 4112-4134. https://doi.org/10.1039/C7AY00690J
Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: sensory cues for health and nutritional value? Science, 311(5762), 815-819. https://doi.org/10.1126/science.1112614
Hartman, J. (1954). A possible objective method for the rapid estimation of flavors in vegetables. Proceedings of the American Society for Horticultural Science, 64, 335-342.
Hawkes, C. H., & Doty, R. L. (2009). The neurology of olfaction. Cambridge Universty Press. https://doi.org/10.1017/CBO9780511575754
Hodgins, D. (2020). The electronic nose: sensor array-based instruments that emulate the human nose. In Techniques for analyzing food aroma (1st ed., pp. 331-371). CRC Press.
Hogewind, F., & Zwaardemaker, H. (1920). On spray-electricity and waterfall-electricity. KNAW Proc, 22, 429-437.
Ikegami, A., & Kaneyasu, M. (1985). Olfactory detection using integrated sensors. Digest of Technical Papers, Transducers, 85, 136-139.
Jia, P., Li, X., Xu, M., & Zhang, L. (2024). Classification techniques of electronic nose: a review. International Journal of Bio-Inspired Computation, 23(1), 16-27. https://doi.org/10.1504/IJBIC.2024.136224
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
Khot, L. R., Panigrahi, S., & Lin, D. (2011). Development and evaluation of piezoelectric-polymer thin film sensors for low concentration detection of volatile organic compounds related to food safety applications. Sensors and Actuators B: Chemical, 153(1), 1-10. https://doi.org/10.1016/j.snb.2010.05.043
Kordas, A., Papadakis, G., Milioni, D., Champ, J., Descroix, S., & Gizeli, E. (2016). Rapid Salmonella detection using an acoustic wave device combined with the RCA isothermal DNA amplification method. Sensing and Bio-Sensing Research, 11, 121-127. https://doi.org/10.1016/j.sbsr.2016.10.010
Länge, K. (2019). Bulk and surface acoustic wave sensor arrays for multi-analyte detection: A review. Sensors, 19(24), 5382. https://doi.org/10.3390/s19245382
Lamanna, L., Rizzi, F., Bhethanabotla, V. R., & De Vittorio, M. (2020). Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film. Biosensors and Bioelectronics, 163, 112164. https://doi.org/10.1016/j.bios.2020.112164
Manguele, P., & Merlo, E. (2023). Chemical senses: taste and smell. Introduction to Biological Psychology. University of Sussex.
Marina, A. M., Che Man, Y. B., & Amin, I. (2010). Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein. Journal of the American Oil Chemists' Society, 87(3), 263-270. https://doi.org/10.1007/s11746-009-1492-2
Matindoust, S., Baghaei-Nejad, M., Abadi, M. H. S., Zou, Z., & Zheng, L. R. (2016). Food quality and safety monitoring using gas sensor array in intelligent packaging. Sensor Review, 36(2), 169-183. https://doi.org/10.1108/SR-07-2015-0115
McGinley, C. M., & McGinley, M. A. (1998). Odor quantification methods & practices at MSW landfills. In Proceedings of Air and Waste Management Association 91st Annual Meeting and Exhibition San Diego, CA: 14-18 June 1998.
Megha, R., Ali, Farida, A. A., Ravikiran, Y. T., Ramana, C. H. V. V., Kirian Kumar, A. B. V., Mishra, D. K., Vijayakumari, S. C. & Kim, D. (2018). Conducting polymer nanocomposite based temperature sensors: A review. Inorganic Chemistry Communications, 98, 11-28. https://doi.org/10.1016/j.inoche.2018.09.040
Moncrieff, R. W. (1961). An instrument for measuring and classifying odors. Journal of applied physiology, 16(4), 742-749. https://doi.org/10.1152/jappl.1961.16.4.742
Nagle, H. T., Gutierrez-Osuna, R., & Schiffman, S. S. (1998). The how and why of electronic noses. IEEE Spectrum, 35(9), 22-31. https://doi.org/10.1109/6.715180
Nazemi, H., Joseph, A., Park, J., & Emadi, A. (2019). Advanced micro-and nano-gas sensor technology: A review. Sensors, 19(6), 1285. https://doi.org/10.3390/s19061285
Pacioni, G., Cerretani, L., Procida, G., & Cichelli, A. (2014). Composition of commercial truffle flavored oils with GC–MS analysis and discrimination with an electronic nose. Food chemistry, 146, 30-35. https://doi.org/10.1016/j.foodchem.2013.09.016
Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352-355. https://doi.org/10.1038/299352a0
Péres, L. O., Li, R. W., Yamauchi, E. Y., Lippi, R., & Gruber, J. (2012). Conductive polymer gas sensor for quantitative detection of methanol in Brazilian sugar-cane spirit. Food Chemistry, 130(4), 1105-1107. https://doi.org/10.1016/j.foodchem.2011.08.014
Schaller, E., Bosset, J. O., & Escher, F. (1998). ‘Electronic noses’ and their application to food. LWT-Food Science and Technology, 31(4), 305-316. https://doi.org/10.1006/fstl.1998.0376
Sharma, P., Ghosh, A., Tudu, B., Sabhapondit, S., Baruah, B. D., Tamuly, P., & Bandyopadhyay, R. (2015). Monitoring the fermentation process of black tea using QCM sensor based electronic nose. Sensors and Actuators B: Chemical, 219, 146-157. https://doi.org/10.1016/j.snb.2015.05.013
Shi, H., Zhang, M., & Adhikari, B. (2018). Advances of electronic nose and its application in fresh foods: A review. Critical reviews in food science and nutrition, 58(16), 2700-2710. https://doi.org/10.1080/10408398.2017.1327419
Sell, C. S. (2014). Chemistry and the Sense of Smell. John Wiley & Sons. https://doi.org/10.1002/9781118522981
Tan, J., & Kerr, W. L. (2019). Characterizing cocoa refining by electronic nose using a Kernel distribution model. Lwt, 104, 1-7. https://doi.org/10.1016/j.lwt.2019.01.028
Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104-115. https://doi.org/10.1016/j.aiia.2020.06.003
Wilson, A. D., & Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors, 9(7), 5099-5148. https://doi.org/10.3390/s90705099
Winchester, R. L., & Martyn, K. (2020). Could early identification of changes in olfactory function be an indicator of preclinical neurodegenerative disease? A systematic review. Neurology and Therapy, 9, 243-263. https://doi.org/10.1007/s40120-020-00199-z
Weierstall, R., & Pause, B. M. (2012). Development of a 15-item odour discrimination test (Düsseldorf Odour Discrimination Test). Perception, 41(2), 193-203. https://doi.org/10.1068/p7113
Xu, Z., & Yuan, Y. J. (2019). Quantification of Staphylococcus aureus using surface acoustic wave sensors. RSC advances, 9(15), 8411-8414. https://doi.org/10.1039/c8ra09790a
Yen, T. Y., & Yao, D. J. (2018). Freshness detection of kiwifruit by gas sensing array based on surface acoustic wave technique. In 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 98-101). IEEE, Singapore. https://doi.org/10.1109/NEMS.2018.8556907
Yuwono, A. S., & Lammers, P. S. (2004). Performance test of a sensor array - based odor detection instrument. Journal of Scientific Research and Development: The CIGR Journal, 3, 9-25.
Zheng, L., Gao, Y., Zhang, J., Li, J., Yu, Y., & Hui, G. (2016). Chinese quince (Cydonia oblonga Miller) freshness rapid determination method using surface acoustic wave resonator combined with electronic nose. International journal of food properties, 19(12), 2623-2634. https://doi.org/10.1080/10942912.2016.1169285
Zou, H. Q., Li, S., Huang, Y. H., Liu, Y., Bauer, R., Peng, L., & Yan, Y. H. (2014). Rapid identification of Asteraceae plants with improved RBF‐ANN classification models based on MOS sensor E‐nose. Evidence‐Based Complementary and Alternative Medicine, 2014(1), 425341. https://doi.org/10.1155/2014/425341
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Bernadett Bana, Eszter Zsédely
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.