Az elektronikus orr fejlődése és alkalmazása: I. Az elektronikus orr története és típusai
DOI:
https://doi.org/10.17108/ActAgrOvar.2024.65.2.18Kulcsszavak:
aromák, szaglás, elektronikus-orr rendszerek, adatelemzésAbsztrakt
Az aromák olyan illékony vegyületek, amelyeket az emberi szaglás érzékel, és különböző minőségi értékekkel jellemezhetők. Az aromák sokféle vegyületből állnak, és ezeknek a vegyületeknek a kombinációja határozza meg az aroma egyedi tulajdonságait. A szaglás biológiai folyamat, mely során az orr receptorai érzékelik az illékony anyagokat, majd az agy feldolgozza ezeket az információkat. Bár a szaglásnak vannak sajátos korlátai, mint például a szubjektivitás és a reprodukálhatóság nehézségei, az elektronikus-orr rendszerek fejlesztése fontos az aromák elemzésében és az illatok azonosításában. Az elektronikus-orr különböző típusai különböző érzékelő anyagok reakcióján alapulnak a kémiai gőzökkel. A legelterjedtebb típusok közé tartoznak a fém-oxid félvezető (MOS) érzékelők, a vezető polimerek (CP) és az akusztikus hullám érzékelők. Az elektronikus orr fejlődésével együtt járó adatelemzési módszereknek kulcsfontosságú szerepük van az illatok és szagok érzékelésében és azok értelmezésében. Az elektronikus orr-ok adatelemzésének fejlődése jelentős előrelépést jelent az illatok és szagok értelmezésében, és hozzájárul széles körű alkalmazásához az iparban és a kutatásokban.
Hivatkozások
Bhattacharyya, N., & Bandhopadhyay, R. (2010). Electronic nose and electronic tongue. In Nondestructive Evaluation of Food Quality: Theory and Practice (pp. 73-100). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-15796-7_4
Buck, T. M., Allen, F. G., & Dalton, J. V. (1965). Detection of chemical species by surface effects on metals and semiconductors. Murray Hill, NJ, USA: Bell Telephone Laboratories.
Burgués, J., & Marco, S. (2018). Low power operation of temperature-modulated metal oxide semiconductor gas sensors. Sensors, 18(2), 339. https://doi.org/10.3390/s18020339
Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials science and Engineering: B, 229, 206-217. https://doi.org/10.1016/j.mseb.2017.12.036
Doty, R. L. (2015). Handbook of olfaction and gustation. John Wiley & Sons. https://doi.org/10.1002/9781118971758
Dravnieks, A., & Trotter, P. J. (1965). Polar vapour detector based on thermal modulation of contact potential. Journal of Scientific Instruments, 42(8), 624. https://doi.org/10.1088/0950-7671/42/8/335
El Hadi, M. A. M., Zhang, F. J., Wu, F. F., Zhou, C. H., & Tao, J. (2013). Advances in fruit aroma volatile research. Molecules, 18(7), 8200-8229. https://doi.org/10.3390/molecules18078200
Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators B: Chemical, 18(1-3), 210-211. https://doi.org/10.1016/0925-4005(94)87085-3
Go, D. B., Atashbar, M. Z., Ramshani, Z., & Chang, H. C. (2017). Surface acoustic wave devices for chemical sensing and microfluidics: a review and perspective. Analytical methods, 9(28), 4112-4134. https://doi.org/10.1039/C7AY00690J
Goff, S. A., & Klee, H. J. (2006). Plant volatile compounds: sensory cues for health and nutritional value? Science, 311(5762), 815-819. https://doi.org/10.1126/science.1112614
Hartman, J. (1954). A possible objective method for the rapid estimation of flavors in vegetables. Proceedings of the American Society for Horticultural Science, 64, 335-342.
Hawkes, C. H., & Doty, R. L. (2009). The neurology of olfaction. Cambridge Universty Press. https://doi.org/10.1017/CBO9780511575754
Hodgins, D. (2020). The electronic nose: sensor array-based instruments that emulate the human nose. In Techniques for analyzing food aroma (1st ed., pp. 331-371). CRC Press.
Hogewind, F., & Zwaardemaker, H. (1920). On spray-electricity and waterfall-electricity. KNAW Proc, 22, 429-437.
Ikegami, A., & Kaneyasu, M. (1985). Olfactory detection using integrated sensors. Digest of Technical Papers, Transducers, 85, 136-139.
Jia, P., Li, X., Xu, M., & Zhang, L. (2024). Classification techniques of electronic nose: a review. International Journal of Bio-Inspired Computation, 23(1), 16-27. https://doi.org/10.1504/IJBIC.2024.136224
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical transactions of the royal society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
Khot, L. R., Panigrahi, S., & Lin, D. (2011). Development and evaluation of piezoelectric-polymer thin film sensors for low concentration detection of volatile organic compounds related to food safety applications. Sensors and Actuators B: Chemical, 153(1), 1-10. https://doi.org/10.1016/j.snb.2010.05.043
Kordas, A., Papadakis, G., Milioni, D., Champ, J., Descroix, S., & Gizeli, E. (2016). Rapid Salmonella detection using an acoustic wave device combined with the RCA isothermal DNA amplification method. Sensing and Bio-Sensing Research, 11, 121-127. https://doi.org/10.1016/j.sbsr.2016.10.010
Länge, K. (2019). Bulk and surface acoustic wave sensor arrays for multi-analyte detection: A review. Sensors, 19(24), 5382. https://doi.org/10.3390/s19245382
Lamanna, L., Rizzi, F., Bhethanabotla, V. R., & De Vittorio, M. (2020). Conformable surface acoustic wave biosensor for E-coli fabricated on PEN plastic film. Biosensors and Bioelectronics, 163, 112164. https://doi.org/10.1016/j.bios.2020.112164
Manguele, P., & Merlo, E. (2023). Chemical senses: taste and smell. Introduction to Biological Psychology. University of Sussex.
Marina, A. M., Che Man, Y. B., & Amin, I. (2010). Use of the SAW sensor electronic nose for detecting the adulteration of virgin coconut oil with RBD palm kernel olein. Journal of the American Oil Chemists' Society, 87(3), 263-270. https://doi.org/10.1007/s11746-009-1492-2
Matindoust, S., Baghaei-Nejad, M., Abadi, M. H. S., Zou, Z., & Zheng, L. R. (2016). Food quality and safety monitoring using gas sensor array in intelligent packaging. Sensor Review, 36(2), 169-183. https://doi.org/10.1108/SR-07-2015-0115
McGinley, C. M., & McGinley, M. A. (1998). Odor quantification methods & practices at MSW landfills. In Proceedings of Air and Waste Management Association 91st Annual Meeting and Exhibition San Diego, CA: 14-18 June 1998.
Megha, R., Ali, Farida, A. A., Ravikiran, Y. T., Ramana, C. H. V. V., Kirian Kumar, A. B. V., Mishra, D. K., Vijayakumari, S. C. & Kim, D. (2018). Conducting polymer nanocomposite based temperature sensors: A review. Inorganic Chemistry Communications, 98, 11-28. https://doi.org/10.1016/j.inoche.2018.09.040
Moncrieff, R. W. (1961). An instrument for measuring and classifying odors. Journal of applied physiology, 16(4), 742-749. https://doi.org/10.1152/jappl.1961.16.4.742
Nagle, H. T., Gutierrez-Osuna, R., & Schiffman, S. S. (1998). The how and why of electronic noses. IEEE Spectrum, 35(9), 22-31. https://doi.org/10.1109/6.715180
Nazemi, H., Joseph, A., Park, J., & Emadi, A. (2019). Advanced micro-and nano-gas sensor technology: A review. Sensors, 19(6), 1285. https://doi.org/10.3390/s19061285
Pacioni, G., Cerretani, L., Procida, G., & Cichelli, A. (2014). Composition of commercial truffle flavored oils with GC–MS analysis and discrimination with an electronic nose. Food chemistry, 146, 30-35. https://doi.org/10.1016/j.foodchem.2013.09.016
Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352-355. https://doi.org/10.1038/299352a0
Péres, L. O., Li, R. W., Yamauchi, E. Y., Lippi, R., & Gruber, J. (2012). Conductive polymer gas sensor for quantitative detection of methanol in Brazilian sugar-cane spirit. Food Chemistry, 130(4), 1105-1107. https://doi.org/10.1016/j.foodchem.2011.08.014
Schaller, E., Bosset, J. O., & Escher, F. (1998). ‘Electronic noses’ and their application to food. LWT-Food Science and Technology, 31(4), 305-316. https://doi.org/10.1006/fstl.1998.0376
Sharma, P., Ghosh, A., Tudu, B., Sabhapondit, S., Baruah, B. D., Tamuly, P., & Bandyopadhyay, R. (2015). Monitoring the fermentation process of black tea using QCM sensor based electronic nose. Sensors and Actuators B: Chemical, 219, 146-157. https://doi.org/10.1016/j.snb.2015.05.013
Shi, H., Zhang, M., & Adhikari, B. (2018). Advances of electronic nose and its application in fresh foods: A review. Critical reviews in food science and nutrition, 58(16), 2700-2710. https://doi.org/10.1080/10408398.2017.1327419
Sell, C. S. (2014). Chemistry and the Sense of Smell. John Wiley & Sons. https://doi.org/10.1002/9781118522981
Tan, J., & Kerr, W. L. (2019). Characterizing cocoa refining by electronic nose using a Kernel distribution model. Lwt, 104, 1-7. https://doi.org/10.1016/j.lwt.2019.01.028
Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104-115. https://doi.org/10.1016/j.aiia.2020.06.003
Wilson, A. D., & Baietto, M. (2009). Applications and advances in electronic-nose technologies. Sensors, 9(7), 5099-5148. https://doi.org/10.3390/s90705099
Winchester, R. L., & Martyn, K. (2020). Could early identification of changes in olfactory function be an indicator of preclinical neurodegenerative disease? A systematic review. Neurology and Therapy, 9, 243-263. https://doi.org/10.1007/s40120-020-00199-z
Weierstall, R., & Pause, B. M. (2012). Development of a 15-item odour discrimination test (Düsseldorf Odour Discrimination Test). Perception, 41(2), 193-203. https://doi.org/10.1068/p7113
Xu, Z., & Yuan, Y. J. (2019). Quantification of Staphylococcus aureus using surface acoustic wave sensors. RSC advances, 9(15), 8411-8414. https://doi.org/10.1039/c8ra09790a
Yen, T. Y., & Yao, D. J. (2018). Freshness detection of kiwifruit by gas sensing array based on surface acoustic wave technique. In 2018 IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 98-101). IEEE, Singapore. https://doi.org/10.1109/NEMS.2018.8556907
Yuwono, A. S., & Lammers, P. S. (2004). Performance test of a sensor array - based odor detection instrument. Journal of Scientific Research and Development: The CIGR Journal, 3, 9-25.
Zheng, L., Gao, Y., Zhang, J., Li, J., Yu, Y., & Hui, G. (2016). Chinese quince (Cydonia oblonga Miller) freshness rapid determination method using surface acoustic wave resonator combined with electronic nose. International journal of food properties, 19(12), 2623-2634. https://doi.org/10.1080/10942912.2016.1169285
Zou, H. Q., Li, S., Huang, Y. H., Liu, Y., Bauer, R., Peng, L., & Yan, Y. H. (2014). Rapid identification of Asteraceae plants with improved RBF‐ANN classification models based on MOS sensor E‐nose. Evidence‐Based Complementary and Alternative Medicine, 2014(1), 425341. https://doi.org/10.1155/2014/425341
Downloads
Megjelent
Hogyan kell idézni
Folyóirat szám
Rovat
License
Copyright (c) 2024 Bernadett Bana, Eszter Zsédely
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.