Feeding Potential of Rapeseed By-Products: Opportunities and Challenges (Review)
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.1.89Keywords:
rapeseed, glucosinolate, treatments, physical methods, chemical processesAbstract
The global feed industry requires an increasing amount of protein sources, which soybean production cannot sustainably supply in the long term. Among alternative protein sources, by-products of rapeseed oil production, particularly rapeseed cake and extracted rapeseed meal, offer a promising solution for feeding monogastric animals (pigs and poultry). Rapeseed by-products have a considerable protein content; however, their utilization is limited by high fiber levels and the presence of antinutritional compounds such as glucosinolates, sinapine, and tannins.
Based on our literature review, we found that physical treatments (e.g., extrusion) effectively reduce the concentration of antinutritional factors, thereby improving nutrients’ digestibility and palatability. Chemical processing methods, such as solvent extraction or ammonia treatment, can further mitigate the adverse effects of glucosinolates and tannins. Combined approaches, integrating hydrothermal and chemical treatments, may provide a more effective strategy for enhancing feed quality. Current plant breeding programs aim to further decrease glucosinolate and fiber content while optimizing protein and oil levels.
The utilization of rapeseed by-products in combination with co-products from bioethanol and starch production (e.g., DDGS, CGF) could serve as an economically viable and sustainable alternative for the partial replacement of extracted soybean meal. By applying appropriate processing technologies, locally produced rapeseed-based feedstuffs can contribute to improved food security and environmental sustainability.
References
Abudabos, A. M., Abdelrahman, M. M., Alatiyat, R. M., Aljumaah, M. R., Al Jassim, R., & Stanley, D. (2021). Effect of dietary inclusion of graded levels of distillers dried grains with solubles on the performance, blood profile and rumen microbiota of Najdi lambs. Heliyon, 7, e05683. https://doi.org/10.1016/j.heliyon.2020.e05683
Adewole, D. I., Rogiewicz, A., Dyck, B., & Slominski, B. A. (2016). Chemical and nutritive characteristics of canola meal from Canadian processing facilities. Animal Feed Science and Technology, 222, 17-30. https://doi.org/10.1016/j.anifeedsci.2016.09.012
Agwa, H. M. M., Saleh, H. M., Ayyat, M. S., & Abdel-Rahman, G. A. (2023). Effect of replacing cottonseed meal with canola meal on growth performance, blood meatbolites, thyroid function, and ruminal parameters of growing lambs. Tropical Animal Health and Production, 55, 122. https://doi.org/10.1007/s11250-023-03528-0
Baker, P. W., & Charlton, A. (2020). A comparison in protein extraction from four major crop residues in Europe using chemical and enzymatic process- a review. Innovative Food Science & Emerging Technologies, 59, 102239. https://doi.org/10.1016/j.ifset.2019.102239
Baker, P. W., Visnjevec, A. M., Krienke, D., Preskett, D., Schwarzkopf, M., & Charlton, A. (2022). Pilot scale extraction of protein from cold and hot-pressed rapeseed cake: Preliminary studies on the effect of upstream mechanical processing. Food and Bioproducts Processing, 133, 132-139. https://doi.org/10.1016/j.fbp.2022.03.007
Banaszkiewicz, T. (2011). The effect of high rape cake and phytase addition on nutritive value of diets for broiler chickens. Journal Applied Animal Research, 39, 346-352. https://doi.org/10.1080/09712119.2011.620445
Beyzi, E., Gunes, A., Beyzi, A. B., & Konca, Y. (2019). Changes in fatty acid and mineral composition of rapeseed (Brassica napus ssp. oleifera L.) oil with seed sizes. Industrial Crops and Products, 129, 10-14. https://doi.org/10.1016/j.indcrop.2018.11.064
Böttger, C., & Südekum, K. (2018). Review: protein value of distillers dried grains with solubles (DDGS) in animal nutrition as affected by the ethanol production process. Animal Feed Science and Technology, 244, 11-17. https://doi.org/10.1016/j.anifeedsci.2018.07.018
Brettschneider, J. G. (2006). Influence of chemical and hydro thermal treated rapeseed on performance, egg quality and thyroid parameters of laying hens [Doctoral thesis]. Olsztyn, Poland.
Brouwer, I. A., Wanders, A. J., & Katan, M. B. (2010). Effect of animal and industrial trans fatty acids on HDL and LDL cholesterol levels in humans – A quantitative review. PLoS ONE, 5, e9434. https://doi.org/10.1371/journal.pone.0009434
Cakaloglu, B., Özyurt, V. H., & Ötles, S. (2018). Cold press in oil extraction. A review. Food Technology, 7, 640-654. https://doi.org/10.24263/2304-974X-2018-7-4-9
Carré, P., & Pouzet, A. (2014): Rapeseed- Tremendous potential for added value generation? Rapeseed market, worldwide and in Europe. OCL, 21, D102. https://doi.org/10.1051/ocl/2013054
Cheng, H., Liu, X., Xiao, Q., Zhang, F., Liu, N., Tang, L., Wang, J., Ma, X., Tan, B., Chen, J., & Jiang, X. (2022). Rapeseed meal and its application in pig diet: A review. Agriculture, 12, 849. https://doi.org/10.3390/agriculture12060849
Chiang, G., Lu, W. Q., Piao, X. S., Hu, J. K., Gong, L. M., & Thacker, P. A. (2010). Effects of feeding solid-state fermented rapeseed meal on performance, nutrient digestibility, intestinal ecology and intestinal morphology of broiler chickens. Asian-Austalasian Journal of Animal Science, 23(2), 263-271. https://doi.org/10.5713/ajas.2010.90145
Danthine, S., Closset, S., Maes, J., Mascrez, S., Blecker, C., Purcaro, G., & Gibon, V. (2022). Enzymatic interesterification to produce zero-trans and dialkylketones-free fats from rapeseed oil. OCL. 29, 36. https://doi.org/10.1051/ocl/2022029
Das, A. K., Islam, N., Faruk, O., Ashaduzzaman, & Dungani, R. (2020). Review on tannins: Extraction processes, applications and possibilities. South African Journal of Botany, 135, 58-70. https://doi.org/10.1016/j.sajb.2020.08.008
De Corato, U., & Viola, E. (2023). Biofuel co-products for livestock feed. In Agricultural Bioeconomy - Innovation and Foresight in the Post-Covid Era (pp. 245-286). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-323-90569-5.00010-X
De Godoy, M. R. C., Bauer, L. L., Parsons, C. M., & Fahey, G. C. (2009). Select corn coproducts from the ethanol industry and their potential as ingredients in pet foods. Journal of Animal Science, 87, 189-199. https://doi.org/10.2527/jas.2007-0596
Delgado, G. E., & Kleber, E. (2019). Trans fatty acids and mortality. In The Molecular Nutrition of Fats (pp. 335-345). Academic Press, Elsevier Inc. https://doi.org/10.1016/B978-0-12-811297-7.00026-3
Drazbo, A., Ognik, K., Zaworska, A., Ferenc, K., & Jankowski, J. (2018). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Science, 97, 3910-3920. https://doi.org/10.3382/ps/pey250
Ewing, W. N. (1997). The feeds directory: commodity products guide. In W. N. Ewing (ed.) Context Products Ltd., Pub. Div., Pack. UK.
Falusi, J., Falusi, J, & Sinka, A. (2013). A repceolaj minőségének javítása, az olajsav tartalom növelése. In Hoffmann, B., Kollaricsné, H. M. (szerk). XIX. Növénynemesítési Tudományos Nap, Keszthely.
Fébel, H. (2018). Ipari melléktermékek felhasználása gazdasági állataink fehérjeellátásának biztosítására. Állattenyésztés és Takarmányozás, 67, 254-272.
Feng, D., & Zuo, J. (2007). Nutritional and anti-nutritional composition of rapeseed meal and its utilization as a feed ingredient for animal. Feed and industrial raw material: Feed [Conference session]. The 12th International Rapeseed Congress, Wuhan, China.
Fenwick, G. R., Spinks, E. A., Wilkinson, A. P., Heaney, R. K., & Legoy, M. A. (1986). Effect of processing on the antinutrient content of rapeseed. Journal of the Science of Food and Agriculture, 37, 735-741. https://doi.org/10.1002/jsfa.2740370805
Golebiewska, K., Fras, A., & Golebiewski, D. (2022). Rapeseed meal as a feed component in monogastric animal nutrition – A review. Annals of Animal Science, 22, 1163-1183. https://doi.org/10.2478/aoas-2022-0020
Goyal, A., Tanwar, B., Sihag, M. K., Kumar, V., Sharma, V., & Soni, S. (2021). Rapeseed/Canola (Brassica napus) seed. Oilseeds: Health Attributes and Food Applications. Springer Nature Singapore Pte. 47-71. https://doi.org/10.1007/978-981-15-4194-0_2
Hajdú, J. (2006). Bio-hajtóanyag előállítás és hasznosítás lehetőségei Magyarországon. Előadás, Szeged, 2006. május 24.
Halle, I., & Schöne, F. (2013). Influence of rapeseed cake, linseed cake and hemp seed cake on laying intensity, egg composition and fatty acid composition of egg yolk in laying hens. Journal für Verbraucherschutz und Lebensmittelsicherheit, 8, 3. https://doi.org/10.1007/s00003-013-0822-3
Hansen, J. O., Skrede, A., Mydland, L. T., & Overland, M. (2017). Fractionation of rapeseed meal by milling, sieving and air classification – Effect on crude protein, amino acids and fiber content and digestibility. Animal Feed Science and Technology, 230, 143-153. https://doi.org/10.1016/j.anifeedsci.2017.05.007
Hayder, G. (2018). The effect study of different levels of rapeseed meal on some productive and physiological characteristics in broiler chickens. Al-Qadisiyah Journal of Agriculture Sciences, 8, 83-87.
Heszky, L. (2007). A repceolaj minőségének élelmiszer és biodízel célú módosítása. Útkeresés XI. Fórum a repcéről. Agrofórum, 18, 13-16.
Higgs, D. A., McBride, J. R., Markert, J. R., Dosanjh, B. S., Plotnikoff, M. D., & Clarke, W. C. (1982). Evaluation of Tower and Candle rapeseed (canola) meal and Bronowski rapeseed protein concentrate as protein supplements in practical dry diets for juvenile chinook salmon (Oncohynchus tsawytscha). Aquaculture, 29, 1-31. https://doi.org/10.1016/0044-8486(82)90030-8
Hill, J., Lethenborg, P., Li, P. W., Rahman, M. H., Sorensen, H., & Sorensen, J. C. (2003). Inheritance of progoitrin and total aliphatic glucosinolates in oilseed rape (Brassica napus L). Euphytica, 134, 179-187. https://doi.org/10.1023/b:euph.0000003857.57573.2f
Hoffmann, S. (2011). Ipari- és takarmánynövények termesztése. A repce integrált termesztése. Digitális Tankönyvtár. Letöltve: 2025. 06. 16. https://dtk.tankonyvtar.hu/bitstream/handle/123456789/8736/0010_1A_Book_10_Ipari_es_takarmanynovenyek_termesztese.pdf?sequence=1&isAllowed=y
Horváth, É. R., Tóth, T., & Fébel, H. (2014). A repcedara- és pogácsa felhasználási lehetőségei a monogasztrikus állatok takarmányozásában. Állattenyésztés és Takarmányozás, 63, 165-183.
Jacela, J. Y., DeRouchey, J. M., Tokach, M. D., Goodband, R. D., Nelssen, J. L., Renter, D. G., & Dritz, S. S. (2010). Feed additives for swine: Fact sheets - high dietary levels of copper and zinc for young pigs, and phytase. Journal of Swine Health and Production, 18, 87-91. https://doi.org/10.4148/2378-5977.7067
Jeroch, H., Brettschneider, J. G., Dänicke, S., Jankowski, J., Kozlowski, K., & Schöne, F. (2009). The effect of chemically and hydrothermally treated rapeseed on the performance and thyroid parameters of layers. Polish Veterinary Science, 124, 439-448.
Jeroch, H., Dänicke, S., Brettschneider, G., & Schumann, W. (1999). Use of treated rapeseed in brown laying hens. Die Bodenkultur, 50, 45-55.
Jobbágy, P. (2013). A hazai biodízel-ágazat komplex elemzése. [Doktori (PhD) értekezés, Debreceni Egyetem]. Ihrig Károly Gazdálkodás- és Szervezéstudományok Doktori Iskola, Debrecen. https://dea.lib.unideb.hu/server/api/core/bitstreams/f8301aa7-2441-4851-84cf-f98e7cab8c50/content
Kakuk, T., & Schmidt, J. (1988). Takarmányozástan. 12.7.1. Olajipari melléktermékek (pp. 496-499). Mezőgazdasági Kiadó, Budapest.
Kaldmae, H., Leming, R., Kass, M., Lember, A., Tölp, S., & Kärt, O. (2010). Chemical composition and nutritional value of heat-treated and cold-pressed rapeseed cake. Veterinarija ir Zootechnika, 49, 55-60.
Kállai, L., & Kralovánszky, U. P. (1978). A takarmányozás biológiája. Mg. Kiadó, Budapest.
Kolláthová, R., Varga, B., Ivanisová, E., Bíró, D., Rolinec, M., Jurácek, M., Simko, M., & Gálik, B. (2019). Mineral profile analysis of oilseeds and their by-products as feeding sources for animal nutrition. Slovak Journal of Animal Science, 52, 9-15.
Kozlowski, K., & Jeroch, H. (2014). Enhancing the nutritional value of poultry feedstuffs using the example of rapeseed products – A review. Annals of Animal Science, 142, 245-256. https://doi.org/10.2478/aoas-2014-0014
Kralovánszky, U. P. (2012). A hazai „fehérje-probléma” – fehéren, feketén. Agrofórum, 23. 14-18.
Lee, J. W., Kim, I. H., & Woyengo, T. A. (2020). Toxicity of canola-derived glucosinolate degradation products in pigs- A review. Animals, 10, 2337. https://doi.org/10.3390/ani10122337
Magyar Takarmánykódex (2004). Vizsgálati módszerek, eljárások. Országos Mezőgazdasági Minősítő Intézet, Budapest.
Mailer, R. J., McFadden, A., Ayton, J., & Redden, B. (2008). Antinutritional components, fibre, sinapine and glucosinolate content in Australian Canola (Brassica napus L.) Meal. Journal of the American Oil Chemists' Society, 85, 937-944. https://doi.org/10.1007/s11746-008-1268-0
Martin, A., Naumann, S., Osen, R., Karbstein, H. P., & Emin, M. A. (2021). Extrusion processing of rapeseed press cake-starch blends: Effect of starch type and treatment temperature on protein, fiber and starch solubility. Foods, 10, 1160. https://doi.org/10.3390/foods10061160
Maskell, I., & Smithard, R. (1994). Degradation of glucosinolates during in vitro incubations of rapeseed meal with myrosinase (EC 3.2 3 1) and with pepsin (EC 3.4 23. I)-hydrocloric acid, and contents of porcine small intestine and caecum. British Journal of Nutrition, 72, 455-466. https://doi.org/10.1079/BJN19940047
Mawson, R., Heaney, R. K., Zdunczyk, Z., & Kozlowska, H. (1994). Rapeseed meal – glucosinolates and their antinutritional effects. Part 4. Goitrogenicity and internal organs abnormalities in animals. Nahrung, 38, 178-91. https://doi.org/10.1016/B978-0-12-811297-7.00026-3
McGregor, D. I., Blake, J. A., & Pickard, M. D. (1983). Detoxification of Brassica juncea with ammonia. In Proceeding of 6th International Rapeseed Conference, II, 1426, Paris, France.
Mézes, M. (2018). Alternative protein sources in the nutrition of farm animals. Acta Agraria Debreceniensis, 150, 1-31. https://doi.org/10.34101/actaagrar/150/1699
Musharavati, F., Sajid, K., Anwer, I., Nizami, A-S., Javed M. H., Ahmad, A., & Naqvi, M. (2023). Advancing biodiesel production system from mixed vegetable oil waste: a life cycle assessment of environmental and economic outcomes. Sustainability, 15, 16550. https://doi.org/10.3390/su152416550
Naczk, M., Amarowicz, R., & Shahidi, F. (1998). Role of phenolics in flavor of rapeseed protein products. Developments in Food Science, 40, 597-613. https://doi.org/10.1016/S0167-4501(98)80080-0
Naczk, M., Shahidi, F., & Sullivan, A. (1992). Recovery of rapeseed tannins by various solvent systems. Food Chemistry, 45, 51-54. https://doi.org/10.1016/0308-8146(92)90012-Q
Nega T., & Woldes, Y. (2018). Review on nutritional limitations and opportunities of using rapeseed meal and other rape seed by-products in animal feeding. Journal of Nutritional Health & Food Engineering, 8, 43-48. https://doi.org/10.15406/jnhfe.2018.08.00254
Nissar, J., Ahad, T., Naik, H., R., & Hussain, Sz. (2017). A review phytic acid: As antinutrient or nutraceutical. Journal of Pharmacognosy and Phytochemistry, 6, 1554-1560.
Oláh, J., & Popp, J. (2022). Fenntartható folyékony bioüzemanyagok kilátásai. Journal of Central European Green Innovation, 9, 13-29. https://doi.org/10.33038/jcegi.2648
Olukomaiya, O. O., Fernando, W. C., Mereddy, R., Li, X., & Sultanbawa, Y. (2020). Solid-state fermentation of canola meal with Aspergillus sojae, Aspergillus ficuum and their co-cultures: Effects on physicochemical, microbiological and functional properties. LWT, 127, 109362. https://doi.org/10.1016/j.lwt.2020.109362
Orosz, Sz., & Tóth, T. (2010). A melegen préselt repce szerepe a szarvasmarha takarmányozásban. Holstein Magazin, 3, 49-52.
Osman, A. I., Qasim, U., Jamil, F., Al-Muhtaseb, A. H., Jrai, A. A., Al-Riyami, M., Al-Maawali, S., Al-Haj, L., Al-Hinai, A., Al-Abri, M., Inayat, A., Waris, A., Farrell, C., Abdel Maksoud, M. I. A., & Rooney, D. W. (2021). Bioethanol and biodiesel: Bibliometric mapping, policies and future needs. Renewable and Sustainable Energy Reviews, 152, 111677. https://doi.org/10.1016/j.rser.2021.111677
Pál, L., Farkas, R., & Dublecz, K. (2011). A takarmány repcepogácsa és kukorica DDGS kiegészítésének vizsgálata brojler hizlalási kísérletben. LIII. Georgikon Napok, Keszthely. 2011. szeptember 29-30.
Pasko, P., Okon, K., Krosniak, M., Prochownik, E., Zmudzki, P., Kryczyk-Koziol, J., & Zagrodzki, P. (2018). Interaction between iodine and glucosinolates in rutabaga sprouts and selected biomarkers of thyroid function in male rats. Journal of Trace Elements in Medicine and Biology, 46, 110-116. https://doi.org/10.1016/j.jtemb.2017.12.002
Paya, H., Taghizadeh, A., Hosseinkhani, A., & Mohammadzadeh, H. (2022). Effects of different heat processing methods of rapeseed on ruminal and post-ruminal nutrient disappearance. Journal of the Hellenic Veterinary Medical Society, 73, 4425-4432. https://doi.org/10.12681/jhvms.27293
Popp, J. (2013). A bioenergia szerepe az energiaellátásban. Gazdálkodás, 57, 419-435.
Popp, J., Fári, M.; Harangi-Rákos, M., & Dudits, D. (2015). A takarmánypiac dilemmái I. rész - Az EU takarmánypiaca a szójaimport szorításában I. Agro Napló, 19, 108-111. http://agronaplo.hu/szakfolyoirat/2015/05/takarmanyozas/a-takarmanypiac-dilemmai-i-resz-az-eu-takarmanypiaca-a-szojaimport-szoritasaban-i/
Popp, J., Harangi-Rákos, M., & Oláh, J. (2018). Fehérjetakarmány függőség az EU-ban: status quo? (The EU’s dependency on protein-rich feed: status quo?). Állattenyésztés és Takarmányozás, 67, 209-224.
Popp, J., Somogyi, A., & Bíró, T. (2010). Újabb feszültség a láthatáron az élelmiszer- és bioüzemanyag-ipar között? Gazdálkodás, 54, 592-603.
Radfar, M., Rogiewicz, A., & Slominski, B. A. (2017). Chemical composition and nutritive value of canola-quality Brassica juncea meal for poultry and the effect of enzyme supplementation. Animal Feed Science and Technology, 225, 97-108. https://doi.org/10.1016/j.anifeedsci.2017.01.007
Rakita, S., Kokic, B, Manoni, M.; Mazzoleni, S., Lin, P., Luciano, A., Ottoboni, M., Cheli, F., & Pinotti, L. (2023). Cold-pressed oilseed cakes as alternative and sustainable feed ingredients: a review. Foods, 12, 432. https://doi.org/10.3390/foods12030432
Révész, N. (2021). A DDGS alkalmazhatóságának vizsgálata a hazai akvakultúrában [Doktori (PhD) értekezés, Magyar Agrár-és Élettudományi Egyetem]. Állatbiotechnológiai és Állattudományi Doktori Iskola, Gödöllő. https://uni-mate.hu/documents/20123/336900/Revesz_Norbert_tezis.pdf/b65d180a-a033-9dbe-5e1c-40cb70cb35c7?t=1643019217480
Rudas, P., & Frenyó, L. (2015). Az állatorvosi élettan alapjai. Springer Hungarica Kiadó, Budapest.
Rymer, C., & Short, F. (2003, March). The nutritive value for livestock of UK oilseed rape and rapeseed meal [Research Review]. No. OS14, HGCA. https://projectblue.blob.core.windows.net/media/Default/Research%20Papers/Cereals%20and%20Oilseed/rr_os14_-_complete_final_report.pdf
Sakib, A. N., & Haque, M. (2024). Corn to ethanol: design, simulate and statistical optimization for sustainable biofuel production. Advances in Bioengineering & Biomedical Science Research, 7, 1-22. https://doi.org/10.33140/ABBSR
Salazar-Villanea, S., Bruininx, E. M. A. M., Gruppen, H., Hendriks, W. H., Carré, P., Quinsac, A., & van der Poel, A. F. B. (2016). Physical and chemical changes of rapeseed meal proteins during toasting and their effects on in vitro digestibility. Journal of Animal Science and Biotechnology, 7, 62. https://doi.org/10.1186/s40104-016-0120-x
Schmidt, J. (2003). A takarmányozás alapjai. Mezőgazda Kiadó, Budapest.
Schöne, F., Kirchheim, U., Schumann, W., & Lüdke, H. (1996). Apparent digestibility of high-fat rapeseed press cake in growing pigs and effects on feed intake, growth and weight of thyroid and liver. Animal Feed Science and Technology, 62, 97-110. https://doi.org/10.1016/S0377-8401(96)00993-5
Shahidi, F. (1990). Canola and Rapeseed. Prod. Chem. Proc. Technol. 173-192, Van Nostrand Reinhold, New York.
Sipos, Gy. (2014). A „Szarvasi-1” energiafű helye a megújuló energiatermelésben (Doktori (PhD) értekezés, Szent István Egyetem]. Gazdálkodás és Szervezéstudományok Doktori Iskola, Gödöllő. https://real-phd.mtak.hu/1282/2/SIPOS_GYULA_PHD_TEZIS.pdf
Slimen, I. B., Yerou, H., Larbi, M. B., M’Hamdi, N., & Najar, T. (2023). Insects as an alternative protein source for poultry nutrition: a review. Frontiers in Veterinary Science, 10, 1200031. https://doi.org/10.3389/fvets.2023.1200031
Slominski, B., Jia, W., Rogiewicz, A., Nyachoti, C. M., & Hickling, D. (2012). Low-fiber canola. Part 1. Chemical and nutritive composition of the meal. Journal of Agriculture and Food Chemistry, 60, 12225-30. https://doi.org/10.1021/jf302117x
Smulikowska, S., Czerwinski, J., & Mieczkowska, A. (2010). Effect of an organic acid blend and phytase added to a rapeseed cake – containing diet on performance, intestinal morphology, caecal microflora activity and thyroid status of broiler chickens. Journal of Animal Physiology and Animal Nutrition, 94, 15-23. https://doi.org/10.1111/j.1439-0396.2008.00876.x
Somogyi, A. (2011). Az első generációs bioüzemanyag-piac komplex értékelése [Doktori (PhD) értekezés, Szent István Egyetem]. Gazdálkodás és Szervezéstudományok Doktori Iskola, Gödöllő.
Swiatkiewicz, S., Koreleski, J., & Arczewska-Wlosek, A. (2010). Egg performance, egg quality, and nutrient utilization in laying hens fed diets with different levels of rapeseed expeller cake. Agricultural and Food Science, 19, 233-239. https://doi.org/10.2137/145960610792912594
Szydlowska-Czerniak, A. (2013). Rapeseed and its products – sources of bioactive compounds: a review of their characteristics and analysis. Critical Reviews in Food Science and Nutrition, 53, 307-330. https://doi.org/10.1080/10408398.2010.529959
Szydlowska-Czerniak, A., Polinski, S., & Momot, M. (2021). Optimization of ingredients for biscuits enriched with rapeseed press cake – changes in their antioxidant and sensory properties. Applied Sciences, 11, 1558. https://doi.org/10.3390/app11041558
Theodoridou, K., & Yu, P. (2013). Effect of processing conditions on the nutritive value of canola meal and presscake. Comparison of the yellow and brown-seeded canola meal with the brown-seeded canola presscake. Journal of the Science of Food and Agriculture, 93, 1986-1995. https://doi.org/10.1002/jsfa.6004
Tikász, I. E. (2014, July 10). Repcepiac és biodízelgyártás. Agrárium. https://agrarium7.hu/cikkek/140-repcepiac-es-a-biodizelgyartas
Ton, L. B., Neik, T. X., & Batley, J. (2020). The use of genetic and gene technologies in shaping modern rapeseed cultivars (Brassica napus L.). Genes, 11, 1161. https://doi.org/10.3390/genes11101161
Tóth, T., Horváth, É. R., & Fébel, H. (2014). A repcetermékek takarmányozási célú felhasználása a sertések és baromfifajok takarmányozásában. Agro Napló. https://www.agronaplo.hu/agrofokusz/20140407/a-repcetermekek takarmanyozasi-celu-felhasznalasa-a-sertesek-es-baromfifajok takarmanyozasaban-31543
Tripathi, M. K., & Mishra, A. S. (2007). Glucosinolates in animal nutrition: A review. Animal Feed Science and Technology, 132, 1-27. https://doi.org/10.1016/j.anifeedsci.2006.03.003
Vermeulen, M. (2009). Isothioccyanates from cruciferous vegetables: kinetics, biomarkers and effects [Doctoral thesis, Wageningen University]. VLAG, Wageningen, The Netherlands.
Von Der Haar, D., Müller, K., Bader-Mittermaier, S., & Eisner, P. (2014). Rapeseed proteins – Production methods and possible application ranges. OCL, 21, D104. https://doi.org/10.1051/ocl/2013038
Vuorela, S., Meyer, A. S., & Heinonen, M. (2004). Impact of isolation method on the antioxidant activity of rapeseed meal phenolics. Journal of Agriculture and Food Chemistry, 52, 8202-8207. https://doi.org/10.1021/jf0487046
Wallace, M., Holroyd, J., Kuraite, A., & Hussain, H. (2022). Does it bind? A method to determine the affinity of calcium and magnesium ions for polymers using 1H NMR Spectroscopy. Analytical Chemistry, 94, 10976-10983. https://doi.org/10.1021/acs.analchem.2c01166
Wang, D., Li, D., Xu, Q., Lv, X., Chen, H., & Wei, F. (2024). Steam explosion pretreatment enhances free/combined phytosterol extraction and utilization in rapeseed (Brassica napus L.) and its processed products: Insights from SPE-GC approach. Current Research in Food Science, 27, 100869. https://doi.org/10.1016/j.crfs.2024.100869
Wang, Z., Zhu, M-Q., Li, M-F., & Wei, Q. (2019). Effects of hydrothermal treatment on enhancing enzymatic hydrolisis of rapeseed straw. Renewable Energy, 134, 446-452. https://doi.org/10.1016/j.renene.2018.11.019
Wengerska, K., Czech, A., Knaga, S., Drabik, K.; Próchniak, T.; Bagrowski, R., Gryta, A., & Batkowska, J. (2022). The quality of eggs derived from Japanese quail fed with the fermented and non-fermented rapeseed meal. Foods, 11, 2492. https://doi.org/10.3390/foods11162492
Wittstock, U., & Halkier, B. A. (2002). Glucosinolate research in the Arabidopsis era. Trends in Plant Science, 7, 263-270. https://doi.org/10.1016/s1360-1385(02)02273-2
Yahbi, M., Keli, A., Alami, N. E., Nabloussi, A., Maataoui, A., & Daoui, K. (2024). Chemical composition and quality of rapeseed meal as affected by genotype and nitrogen fertilization. OCL, 31, 12. https://doi.org/10.1051/ocl/2024004
Yan, X., & Chen, S. (2007). Regulation of plant glucosinolate metabolism. Planta, 226, 1343-1352. https://doi.org/10.1007/s00425-007-0627-7
Zhang, W., Fu, Q., Jiang, H., Tang, H., Li, X., Xie, Y., Cao, X., Liu, Q., & Yuan, Y. (2023). Insight into the microwave pretreatment of rapeseeds on the flavor characteristics of rapeseed oils. LWT, 184, 115045. https://doi.org/10.1016/j.lwt.2023.115045
Zieniuk, B., Woloszynowska, M., Bialecka-Florjanczyk, E., & Fabiszewska, A. (2020). Synthesis of industrially useful phenolic compounds esters by means of biocatalysts obtained along with waste fish oil utilization. Sustainability, 12, 5804. https://doi.org/10.3390/su12145804
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.