Evolution and applications of the electronic nose: II. The role of the electronic nose in food and agriculture
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.1.111Keywords:
electronic nose, quality control, sustainable agriculture, future technologyAbstract
Electronic nose technology, with its sensitive sensors, can be used in many areas, especially in food quality assessment. It can detect volatile compounds that affect the aroma, taste and overall quality of food. It can be used to quickly and reliably measure the quality, shelf life, freshness and authenticity of food, as well as to detect contaminants, allergens and harmful substances. It is widely used in various sectors of the food industry, such as meat, oil, alcohol and tea. The electronic nose technology also helps in soil testing, plant disease detection and stable air quality detection. High quality feed production and regulatory compliance require increased quality control, which requires rapid, non-destructive and cost-effective analytical methods. Electronic Nose technology can be integrated with modern technologies such as IoT (Internet of Things), Blockchain, AI (Artificial Intelligence), Big Data, AR (Augmented Reality) and VR (Virtual Reality), which further expand its application potential and improve decision-making in various industries. The growing role of electronic nose technology can help various industries to optimise quality control processes and ensure sustainability.
References
Adak, M. F., & Yumusak, N. (2016). Classification of E-nose aroma data of four fruit types by ABC-based neural network. Sensors, 16(3), 304. https://doi.org/10.3390/s16030304
Adamiec, J., Dolezal, M., Mikova, K., & Davidek, J. (2002). Changes in egg volatiles during storage. Czech Journal of Food Sciences, 20(2), 79-82. https://doi.org/10.17221/3515-CJFS
Akyurek, H., & Okur, A. A. (2009). Effect of storage time, temperature and hen age on egg quality in free-range layer hens. Journal of Animal and Veterinary Advances, 8(10), 1953-1958.
Al-Dayyeni, W. S., Al-Yousif, S., Taher, M. M., Al-Faouri, A. W., Tahir, N. M., Jaber, M. M., & Saleh, A. H. (2021). A review on electronic nose: coherent taxonomy, classification, motivations, challenges, recommendations and datasets. Ieee Access, 9, 88535-88551. https://doi.org/10.1109/ACCESS.2021.3090165
Ali, M. M., Hashim, N., Abd Aziz, S., & Lasekan, O. (2020). Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends in Food Science & Technology, 99, 1-10., https://doi.org/10.1016/j.tifs.2020.02.028
Aunsa-Ard, W., Pobkrut, T., Kerdcharoen, T., Prombaingoen, N., & Kijpreedaborisuthi, O. (2021a, January) Electronic nose for monitoring of livestock farm odors (poultry farms) [Conference session] (pp. 176-180). 13th International Conference on Knowledge and Smart Technology (KST). IEEE. https://doi.org/10.1109/KST51265.2021.9415825
Aunsa-Ard, W., Pobkrut, T., Kerdcharoen, T., Siyang, S., & Prombaingoen, N. (2021b, April) Development of intelligent electronic nose for livestock industries [Conference session] (pp. 221-225). 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST). IEEE. https://doi.org/10.1109/ICEAST52143.2021.9426281
Anzivino, R., Sciancalepore, P. I., Dragonieri, S., Quaranta, V. N., Petrone, P., Petrone, D., & Carpagnano, G. E. (2022). The role of a polymer-based e-nose in the detection of head and neck cancer from exhaled breath. Sensors, 22(17), 6485. https://doi.org/10.3390/s22176485
Asman, F. F., Permata, E., & Fatkhurrokhman, M. (2019). A prototype of smart lock based on internet of things (IoT) with ESP8266. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI), 5(2), 101-111. https://doi.org/10.26555/jiteki.v5i2.15317
Aguinaga Bósquez, J. P., Kovacs, Z., Gillay, Z., Bázár, G., Palkó, C., Hingyi, H., & Tóth, T. (2021). Evaluating the effect of a brewery by-product as feed supplementation on the quality of eggs by means of a human panel and E-Tongue and E-Nose analysis. Chemosensors, 9(8), 213. https://doi.org/10.3390/chemosensors9080213
Barea-Ramos, J. D., Cascos, G., Mesías, M., Lozano, J., & Martín-Vertedor, D. (2022). Evaluation of the olfactory quality of roasted coffee beans using a digital nose. Sensors, 22(22), 8654. https://doi.org/10.3390/s22228654
Bhattacharyya, N., Seth, S., Tudu, B., Tamuly, P., Jana, A., Ghosh, D., & Sabhapandit, S. (2007). Detection of optimum fermentation time for black tea manufacturing using electronic nose. Sensors and Actuators B: Chemical, 122(2), 627-634. https://doi.org/10.1016/j.snb.2006.07.013
Bieganowski, A., Jaromin-Glen, K., Guz, Ł., Łagód, G., Jozefaciuk, G., Franus, W., & Sobczuk, H. (2016). Evaluating soil moisture status using an e-nose. Sensors, 16(6), 886. https://doi.org/10.3390/s16060886
Bieganowski, A., Józefaciuk, G., Bandura, L., Guz, Ł., Łagód, G., & Franus, W. (2018). Evaluation of hydrocarbon soil pollution using e-nose. Sensors, 18(8), 2463. https://doi.org/10.3390/s18082463
Biondi, E., Blasioli, S., Galeone, A., Spinelli, F., Cellini, A., Lucchese, C., & Braschi, I. (2014). Detection of potato brown rot and ring rot by electronic nose: From laboratory to real scale. Talanta, 129, 422-430. https://doi.org/10.1016/j.talanta.2014.04.057
Braggins, T., Jamieson, P., Luckman, M., Nickless, E., Scott, G., Yang, D., & Andrewes, P. (2020). Variability between farms of New Zealand raw bovine milk flavour: Identification and characterisation of odorous outliers. International Dairy Journal, 111, 104835. https://doi.org/10.1016/j.idairyj.2020.104835
Caner, C. (2005). The effect of edible eggshell coatings on egg quality and consumer perception. Journal of the Science of Food and Agriculture, 85(11), 1897-1902. https://doi.org/10.1002/jsfa.2185
Centonze, V., Lippolis, V., Cervellieri, S., Damascelli, A., Casiello, G., Pascale, M., & Longobardi, F. (2019). Discrimination of geographical origin of oranges (Citrus sinensis L. Osbeck) by mass spectrometry-based electronic nose and characterization of volatile compounds. Food chemistry, 277, 25-30. https://doi.org/10.1016/j.foodchem.2018.10.105
De Cesare, F., Pantalei, S., Zampetti, E., & Macagnano, A. (2008). Electronic nose and SPME techniques to monitor phenanthrene biodegradation in soil. Sensors and Actuators B: chemical, 131(1), 63-70. https://doi.org/10.1016/j.snb.2007.12.012
De Cesare, F., Di Mattia, E., Pantalei, S., Zampetti, E., Vinciguerra, V., Canganella, F., & Macagnano, A. (2011). Use of electronic nose technology to measure soil microbial activity through biogenic volatile organic compounds and gases release. Soil Biology and Biochemistry, 43(10), 2094-2107. https://doi.org/10.1016/j.soilbio.2011.06.009
Chen, J., Zhu, Y., Chang, X., Pan, D., Song, G., Guo, Z., & Naik, N. (2021). Recent progress in essential functions of soft electronic skin. Advanced Functional Materials, 31(42), 2104686. https://doi.org/10.1002/adfm.202104686
Chen, Q., Liu, A., Zhao, J., & Ouyang, Q. (2013). Classification of tea category using a portable electronic nose based on an odor imaging sensor array. Journal of pharmaceutical and biomedical analysis, 84, 77-83. https://doi.org/10.1016/j.jpba.2013.05.046
Cheng, S. M., Wang, J., Wang, Y. W., & Ma, Y. H. (2013). Research on distinguishing tomato seeding infected with early blight disease by electronic nose. Bull. Sci. Technol, 29, 68-77.
Cheng, S. M., Wang, J., Wang, Y. W., & Wei, Z. B. (2017). Discrimination of different types damage of tomato seedling by electronic nose [Conference session]. ITM Web of conferences. EDP Sciences. https://doi.org/10.1051/itmconf/20171101019
Chi, X., Zhang, Y., Zheng, N., Wang, J., & Liu, H. (2024). HS-GC-IMS and HS-SPME/GC-MS coupled with E-nose and E-tongue reveal the flavors of raw milk from different regions of China. Current Research in Food Science, 8, 100673. https://doi.org/10.1016/j.crfs.2023.100673
Cho, S., & Moazzem, M. S. (2022). Recent applications of potentiometric electronic tongue and electronic nose in sensory evaluation. Preventive nutrition and food science, 27(4), 354. https://doi.org/10.3746/pnf.2022.27.4.354
Chung, S. H., & Lee, K. W. (2014). Effect of hen age, storage duration and temperature on egg quality in laying hens. International Journal of Poultry Science, 13(11), 634. https://doi.org/10.3923/ijps.2014.634.636
Claeys, W. L., Cardoen, S., Daube, G., De Block, J., Dewettinck, K., Dierick, K., & Herman, L. (2013). Raw or heated cow milk consumption: Review of risks and benefits. Food control, 31(1), 251-262. https://doi.org/10.1016/j.foodcont.2012.09.035
Coppa, M., Verdier-Metz, I., Ferlay, A., Pradel, P., Didienne, R., Farruggia, A., & Martin, B. (2011). Effect of different grazing systems on upland pastures compared with hay diet on cheese sensory properties evaluated at different ripening times. International dairy journal, 21(10), 815-822. https://doi.org/10.1016/j.idairyj.2011.04.006
Cui, S., Inocente, E. A. A., Acosta, N., Keener, H. M., Zhu, H., & Ling, P. P. (2019). Development of fast e-nose system for early-stage diagnosis of aphid-stressed tomato plants. Sensors, 19(16), 3480. https://doi.org/10.3390/s19163480
Dutta, R., Hines, E. L., Gardner, J. W., Udrea, D. D., & Boilot, P. (2003). Non-destructive egg freshness determination: an electronic nose based approach. Measurement Science and Technology, 14(2), 190. https://doi.org/10.1088/0957-0233/14/2/306
Emmelkamp, P. M., & Meyerbröker, K. (2021). Virtual reality therapy in mental health. Annual review of clinical psychology, 17(1), 495-519., https://doi.org/10.1146/annurev-clinpsy-081219-115923
Ezhilan, M., Nesakumar, N., Babu, K. J., Srinandan, C. S., & Rayappan, J. B. B. (2018). An Electronic Nose for Royal Delicious Apple Quality Assessment – A Tri-layer Approach. Food Research International, 109, 44-51. https://doi.org/10.1016/j.foodres.2018.04.009
Farahiyah, D., & Purnama, B. W. (2021). Design Prototype of Temperature and Humidity Control and Monitoring on Weaver Ant Cage based on Internet of Things. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 7(2), 326-337. https://doi.org/10.1016/j.idairyj.2011.04.006
Feng, L., Zhang, M., Bhandari, B., & Guo, Z. (2018). A novel method using MOS electronic nose and ELM for predicting postharvest quality of cherry tomato fruit treated with high pressure argon. Computers and Electronics in Agriculture, 154, 411-419. https://doi.org/10.1016/j.compag.2018.09.032
Feng, X., Wang, H., Wang, Z., Huang, P., & Kan, J. (2022). Discrimination and characterization of the volatile organic compounds in eight kinds of huajiao with geographical indication of China using electronic nose, HS-GC-IMS and HS-SPME-GC–MS. Food Chemistry, 375, 131671. https://doi.org/10.1016/j.foodchem.2021.131671
Feyzioglu, A., & Taspinar, Y. S. (2023). Beef quality classification with reduced e-nose data features according to beef cut types. Sensors, 23(4), 2222. https://doi.org/10.3390/s23042222
Gado, Y. H., Bazár, Gy., Radó-Nyiczky, É., Orosz, Sz., & Tóth, T. (2022). Description of the Odor Profile of Fermented Alfalfa and Rye Silages Using an Electronic Nose. Hungarian Journal of Animal Production/Állattenyésztés és Takarmányozás, 71(1).
Gamboa, J. C. R., da Silva, A. J., de Andrade Lima, L. L., & Ferreira, T. A. (2019). Wine quality rapid detection using a compact electronic nose system: Application focused on spoilage thresholds by acetic acid. Lwt, 108, 377-384. https://doi.org/10.1016/j.lwt.2019.03.074
Gancarz, M., Wawrzyniak, J., Gawrysiak-Witulska, M., Wiącek, D., Nawrocka, A., Tadla, M., & Rusinek, R. (2017). Application of electronic nose with MOS sensors to prediction of rapeseed quality. Measurement, 103, 227-234. https://doi.org/10.1016/j.measurement.2017.02.042
Garcia, C. D. C., Pereira Netto, A. D., Silva, M. C. D., Catão, A. A., Souza, I. A. D., Farias, L. S., ... & Silva Junior, A. I. D. (2018). Relative importance and interaction of roasting variables in coffee roasting process. Coffee Science, 13(3), 379-388. https://doi.org/10.25186/cs.v13i3.1483
Gila, D. M. M., García, J. G., Bellincontro, A., Mencarelli, F., & Ortega, J. G. (2020). Fast tool based on electronic nose to predict olive fruit quality after harvest. Postharvest Biology and Technology, 160, 111058. https://doi.org/10.1016/j.postharvbio.2019.111058
Giungato, P., Laiola, E., & Nicolardi, V. (2017). Evaluation of industrial roasting degree of coffee beans by using an electronic nose and a stepwise backward selection of predictors. Food Analytical Methods, 10, 3424-3433. https://doi.org/10.1016/j.jclepro.2016.05.148
Gu, S., Chen, W., Wang, Z., Wang, J., & Huo, Y. (2020). Rapid detection of Aspergillus spp. infection levels on milled rice by headspace-gas chromatography ion-mobility spectrometry (HS-GC-IMS) and E-nose. LWT, 132, 109758. https://doi.org/10.1016/j.lwt.2020.109758
Grassi, S., Benedetti, S., Magnani, L., Pianezzola, A., & Buratti, S. (2022). Seafood freshness: e-nose data for classification purposes. Food Control, 138, 108994. https://doi.org/10.1016/j.foodcont.2022.108994
Haddi, Z., Amari, A., Ali, A. O., El Bari, N., Barhoumi, H., Maaref, A., & Bouchikhi, B. E. N. A. (2011). Discrimination and identification of geographical origin virgin olive oil by an e-nose based on MOS sensors and pattern recognition techniques. Procedia Engineering, 25, 1137-1140. https://doi.org/10.1016/j.proeng.2011.12.280
Haddi, Z., El Barbri, N., Tahri, K., Bougrini, M., El Bari, N., Llobet, E., & Bouchikhi, B. (2015). Instrumental assessment of red meat origins and their storage time using electronic sensing systems. Analytical Methods, 7(12), 5193-5203. https://doi.org/10,1039/C5AY00572H
Hua, Z., Yu, Y., Zhao, C., Zong, J., Shi, Y., & Men, H. (2021). A feature dimensionality reduction strategy coupled with an electronic nose to identify the quality of egg. Journal of Food Process Engineering, 44(11), e13873. https://doi.org/10.1111/jfpe.13873
Jana, A., Bandyopadhyay, R., Tudu, B., Roy, J. K., Bhattacharyya, N., Adhikari, B., & Mukherjee, S. (2011, September). Classification of aromatic and non-aromatic rice using electronic nose and artificial neural network [Conference session] (pp. 291-294). 2011 IEEE Recent Advances in Intelligent Computational Systems. IEEE. https://doi.org/10.1109/RAICS.2011.6069320
Jia, W., Liang, G., Wang, Y. és Wang, J. (2018). Elektronikus orrok, mint hatékony eszköz a húsminőség felméréséhez: egy mini áttekintés. Food Analytical Methods, 11, 2916-2924. https://doi.org/10.1007/s12161-018-1283-Xu
Jiang, H., & Chen, Q. (2014). Development of electronic nose and near infrared spectroscopy analysis techniques to monitor the critical time in SSF process of feed protein. Sensors, 14(10), 19441-19456. https://doi.org/10.3390/s141019441
Jiang, H., Chen, Q., & Liu, G. (2014). Monitoring of solid-state fermentation of protein feed by electronic nose and chemometric analysis. Process Biochemistry, 49(4), 583-588. https://doi.org/10.1016/j.procbio.2014.01.006
Jo, C., Ahn, D. U., Liu, X. D., Kim, K. H., & Nam, K. C. (2011). Effects of chitosan coating and storage with dry ice on the freshness and quality of eggs. Poultry science, 90(2), 467-472. https://doi.org/10.3382/ps.2010-00966
Juliyanto, M. A., Sulistiyowati, I., & Ahfas, A. (2023). Design of Turbine Aerator with Remote Control and Internet of Things (IoT)-Based Water pH Monitoring. Buletin Ilmiah Sarjana Teknik Elektro, 5(1), 156-166. https://doi.org/10.12928/biste.v5i1.7863
Khan, F., Kumar, R. L., & Kadry, S. (2021). Hybrid reality-based education expansion system for non-traditional learning. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 7(1), 185. https://doi.org/10.26555/jiteki.v7i1.20568
Konduru, T., Rains, GC és Li, C. (2015). A savanyú bőrrel fertőzött hagyma észlelése testreszabott gázérzékelő tömb segítségével. Élelmiszermérnöki folyóirat, 160, 19-27. https://doi.org/10.1016/j.jfoodeng.2015.03.025
Kumar, K., Chaudhri, S. N., Rajput, N. S., Shvetsov, A. V., Sahal, R., & Alsamhi, S. H. (2023). An IoT-enabled E-Nose for remote detection and monitoring of airborne pollution hazards using LoRa network protocol. Sensors, 23(10), 4885. https://doi.org/10.3390/s23104885
Labreche, S., Bazzo, S., Cade, S., & Chanie, E. (2005). Shelf life determination by electronic nose: application to milk. Sensors and Actuators B: Chemical, 106(1), 199-206. https://doi.org/10.1016/j.snb.2004.06.027
Laga, S. A., & Sarno, R. (2020). Temperature effect of electronic nose sampling for classifying mixture of beef and pork. Indonesian Journal of Electrical Engineering and Computer Science, 19(3), 1626-1634. https://doi.org/10.11591/IJEECS.V19.I3.PP1626-1634
Lee, W. H., Choi, S., Oh, I. N., Shim, J. Y., Lee, K. S., An, G., & Park, J. T. (2017). Multivariate classification of the geographic origin of Chinese cabbage using an electronic nose-mass spectrometry. Food Science and Biotechnology, 26, 603-609. https://doi.org/10.1007/s10068-017-0102-6
Limbo, S., Torri, L., Sinelli, N., Franzetti, L., & Casiraghi, E. (2010). Evaluation and predictive modeling of shelf life of minced beef stored in high-oxygen modified atmosphere packaging at different temperatures. Meat science, 84(1), 129-136. https://doi.org/10.1016/j.meatsci.2009.08.035
Lin, Z., & Xiang, W. (2023). Wireless Sensing and Networking for the Internet of Things. Sensors, 23(3), 1461. https://doi.org/10.3390/s23031461
Liu, H., Li, Q., Yan, B., Zhang, L., & Gu, Y. (2018). Bionic electronic nose based on MOS sensors array and machine learning algorithms used for wine properties detection. Sensors, 19(1), 45. https://doi.org/10.3390/s19010045
Liu, M., Pan, L., Tu, K., & Liu, P. (2010). Determination of egg freshness during shelf life with electronic nose. Transactions of the Chinese Society of Agricultural Engineering, 26(4), 317-321.
Liu, Q., Trevisan, A. H., Yang, M., & Mascarenhas, J. (2022). A framework of digital technologies for the circular economy: Digital functions and mechanisms. Business Strategy and the Environment, 31(5), 2171-2192. https://doi.org/10.1002/bse.3015
Lu, W., Yu, W., Gan, C., Liu, Q., & Li, J. (2015, December). Application of electronic nose technology in the detection of wheat quality [Conference session] (pp. 133-136). 2015 International Conference on Intelligent Transportation, Big Data and Smart City. IEEE. https://doi.org/10.1109/ICITBS.2015.39
Luo, D., Chen, J., Gao, L., Liu, Y., & Wu, J. (2017). Geographical origin identification and quality control of Chinese chrysanthemum flower teas using gas chromatography – mass spectrometry and olfactometry and electronic nose combined with principal component analysis. International Journal of Food Science & Technology, 52(3), 714-723. https://doi.org/10.1111/ijfs.13326
McGann, J. P. (2017). Poor human olfaction is a 19th-century myth. Science, 356(6338), eaam7263. https://doi.org/10.1126/science.aam7263
Mei, C., Shu, D., Jiang, H., Huang, W., & Liu, G. (2014). Monitoring of straw solid-state fermentation based on e-nose and gaussian process. Trans Chin Soc Agric Mach, 45, 188-193.
Mishra, G., Srivastava, S., Panda, B. K., & Mishra, H. N. (2018). Sensor array optimization and determination of Rhyzopertha dominica infestation in wheat using hybrid neuro-fuzzy-assisted electronic nose analysis. Analytical Methods, 10(47), 5687-5695. https://doi.org/10.1039/C8AY01921E
Naranjo, A., Martínez-Lapuente, L., Ayestarán, B., Guadalupe, Z., Pérez, I., Canals, C., & Adell, E. (2021). Aromatic and sensory characterization of Maturana Blanca wines made with different technologies. Beverages, 7(1), 10. https://doi.org/10.3390/beverages7010010
Narushin, V. G., Romanov, M. N., Lu, G., Cugley, J., & Griffin, D. K. (2021). How oviform is the chicken egg? New mathematical insight into the old oomorphological problem. Food Control, 119, 107484. https://doi.org/10.1016/j.foodcont.2020.107484
No, H. K., Prinyawiwatkul, W., & Meyers, S. P. (2005). Comparison of shelf life of eggs coated with chitosans prepared under various deproteinization and demineralization times. Journal of Food Science, 70(6), s377-s382. https://doi.org/10.1111/j.1365-2621.2005.tb11459.x
O'Callaghan, T. F., Hennessy, D., McAuliffe, S., Kilcawley, K. N., O'Donovan, M., Dillon, P., & Stanton, C. (2018). Corrigendum to “Effect of pasture versus indoor feeding systems on raw milk composition and quality over an entire lactation” (J. Dairy Sci. 99: 9424–9440). Journal of Dairy Science, 101(9), 8615. https://doi.org/10.3168/jds.2016-10985
Omatu, S., Yano, M., & Ikeda, Y. (2015, April). Smell classification of wines by the learning vector quantization method [Conference session] (pp. 195-200). 30th Annual ACM Symposium on Applied Computing. https://doi.org/10.1145/2695664.2695833
Penza, M., & Cassano, G. (2004). Recognition of adulteration of Italian wines by thin-film multisensor array and artificial neural networks. Analytica chimica acta, 509(2), 159-177. https://doi.org/10.1016/j.aca.2003.12.026
Philippe, F. X., Cabaraux, J. F., & Nicks, B. (2011). Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agriculture, ecosystems & environment, 141(3-4), 245-260. https://doi.org/10.1016/j.agee.2011.03.012
Pobkrut, T., Siyang, S., Thepudom, T., & Kerdcharoen, T. (2018, January). Development of malodor monitoring system based on electronic nose technology (pp. 5-6). 2018 IEEE 8th International Nanoelectronics Conferences (INEC). IEEE. https://doi.org/10.1109/INEC.2018.8441933
Pulluri, K. K., & Kumar, V. N. (2021, August). Wine quality assessment using electronic nose [Conference session]. (pp. 1-5). 2021 Asian Conference on Innovation in Technology (ASIANCON). IEEE. https://doi.org/10.1109/ASIANCON51346.2021.9544828
Pulluri, K. K., & Kumar, V. N. (2022). Qualitative and quantitative detection of food adulteration using a smart E-Nose. Sensors, 22(20), 7789. https://doi.org/10.3390/s22207789
Purwono, P., Ma’arif, A., Negara, I. S. M., Rahmaniar, W., & Rahmawan, J. (2021). Linkage detection of features that cause stroke using feyn qlattice machine learning model. Jurnal Ilmiah Teknik Elektro Komputer dan Informatika, 3(7), 423-432. https://dx.doi.org/10.26555/jiteki.v7i3.22237
Qu, X., Yang, Z., Cheng, J., Li, Z., & Ji, L. (2023). Development and application of nanogenerators in humanoid robotics. Nano Trends, 3, 100013. https://doi.org/10.1016/j.nwnano.2023.100013.
Roy, M., & Yadav, B. K. (2022). Electronic nose for detection of food adulteration: A review. Journal of Food Science and Technology, 59, 846-858. https://doi.org/10.1007/s13197-021-05057-w
Rahmati, S., Julkapli, N. M., Yehye, W. A., & Basirun, W. J. (2016). Identification of meat origin in food products – A review. Food control, 68, 379-390. https://doi.org/10.1016/j.foodcont.2016.04.013
Ren, Y., Ramaswamy, H. S., Li, Y., Yuan, C., & Ren, X. (2018). Classification of impact injury of apples using electronic nose coupled with multivariate statistical analyses. Journal of Food Process Engineering, 41(5), e12698. https://doi.org/10.1111/jfpe.12698
Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2021). Handbook of Enology, volume 2: The chemistry of wine stabilization and treatments. John Wiley & Sons. https://doi.org/10.1002/0470010398
Rohman, A. (2018). The employment of Fourier transform infrared spectroscopy coupled with chemometrics techniques for traceability and authentication of meat and meat products. Journal of advanced veterinary and animal research, 6(1), 9. https://doi.org/10.5455/javar.2019.f306
Ruengdech, A., & Siripatrawan, U. (2020). Visualization of mulberry tea quality using an electronic sensor array, SPME-GC/MS, and sensory evaluation. Food Bioscience, 36, 100593. https://doi.org/10.1016/j.fbio.2020.100593.ya
Rutolo, M. F., Clarkson, J. P., & Covington, J. A. (2018). The use of an electronic nose to detect early signs of soft-rot infection in potatoes. Biosystems engineering, 167, 137-143. https://doi.org/10.1016/j.biosystemseng.2018.01.001
Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., & Ahmadi, H. (2016). Application of MOS based electronic nose for the prediction of banana quality properties. Measurement, 82, 105-114. https://doi.org/10.1016/j.measurement.2015.12.041
Sánchez, R., Boselli, E., Fernández, A., Arroyo, P., Lozano, J., & Martín-Vertedor, D. (2022). Determination of the masking effect of the ‘zapateria’defect in flavoured stuffed olives using E-nose. Molecules, 27(13), 4300. https://doi.org/10.3390/molecules27134300
Sarno, R., Triyana, K., Sabilla, S. I., Wijaya, D. R., Sunaryono, D., & Fatichah, C. (2020). Detecting pork adulteration in beef for halal authentication using an optimized electronic nose system. IEEE Access, 8, 221700-221711. https://doi.org/10.1109/ACCESS.2020.3043394
Severini, C., Ricci, I., Marone, M., Derossi, A., & De Pilli, T. (2015). Changes in the aromatic profile of espresso coffee as a function of the grinding grade and extraction time: a study by the electronic nose system. Journal of Agricultural and Food Chemistry, 63(8), 2321-2327. https://doi.org/10.1021/jf505691u
Spooner, A., Chen, E., Sowmya, A., Sachdev, P., Kochan, N. A., Trollor, J., & Brodaty, H. (2020). A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Scientific reports, 10(1), 20410. https://doi.org/10.1038/s41598-020-77220-w
Tabidi, M. H. (2011). Impact of storage period and quality on composition of table egg. Advances in Environmental Biology, 5(5), 856-861.
Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e-tongue) in food quality-related properties determination: A review. Artificial Intelligence in Agriculture, 4, 104-115. https://doi.org/10.1016/j.aiia.2020.06.003
Thazin, Y., Eamsa-Ard, T., Pobkrut, T., & Kerdcharoen, T. (2019, June). Formalin adulteration detection in food using E-nose based on nanocomposite gas sensors [Conference session] (pp. 64-67). 2019 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia). IEEE. https://doi.org/10.1109/ICCE-Asia46551.2019.8941601
Tian, X. Y., Cai, Q., & Zhang, Y. M. (2012). Rapid classification of hairtail fish and pork freshness using an electronic nose based on the PCA method. Sensors, 12(1), 260-277. https://doi.org/10.3390/s120100260
Tohidi, M., Ghasemi-Varnamkhasti, M., Ghafarinia, V., Bonyadian, M., & Mohtasebi, S. S. (2018). Development of a metal oxide semiconductor-based artificial nose as a fast, reliable and non-expensive analytical technique for aroma profiling of milk adulteration. International dairy journal, 77, 38-46. https://doi.org/10.1016/j.idairyj.2017.09.003
Xu, S., Sun, X., Lu, H., Yang, H., Ruan, Q., Huang, H., & Chen, M. (2018). Detecting and monitoring the flavor of tomato (Solanum lycopersicum) under the impact of postharvest handlings by physicochemical parameters and electronic nose. Sensors, 18(6), 1847. https://doi.org/10.3390/s18061847
Yakubu, H. G., Kovacs, Z., Toth, T., & Bazar, G. (2022). Trends in artificial aroma sensing by means of electronic nose technologies to advance dairy production – A review. Critical Reviews in Food Science and Nutrition, 63(2), 234-248. https://doi.org/10.1080/10408398.2021.1945533
Yongwei, W., Wang, J., Zhou, B., & Lu, Q. (2009). Monitoring storage time and quality attribute of egg based on electronic nose. Analytica Chimica Acta, 650(2), 183-188. https://doi.org/10.1016/j.aca.2009.07.049
Vajdi, M., Varidi, M. J., Varidi, M., & Mohebbi, M. (2019). Using electronic nose to recognize fish spoilage with an optimum classifier. Journal of Food Measurement and Characterization, 13, 1205-1217. https://doi.org/10.1007/s11694-019-00036-4
Yudhana, A. (2023). Tsukamoto fuzzy inference system on Internet of Things-based for room temperature and humidity control. IEEE Access, 11, 6209-6227. https://doi.org/10.1109/ACCESS.2023.3236183
Wang, B., Xu, S., & Sun, D. W. (2010). Application of the electronic nose to the identification of different milk flavorings. Food Research International, 43(1), 255-262. https://doi.org/10.1016/j.foodres.2009.09.018
Wang, Q., Jin, G., Jin, Y., Ma, M., Wang, N., Liu, C., & He, L. (2014). Discriminating eggs from different poultry species by fatty acids and volatiles profiling: Comparison of SPME‐GC/MS, electronic nose, and principal component analysis method. European journal of lipid science and technology, 116(8), 1044-1053. https://doi.org/10.1002/ejlt.201400016
Wang, C., Zhang, X., & Hu, W. (2020). Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. Chemical Society Reviews, 49(3), 653-670. https://doi.org/10.1039/C9CS00431A
Wen, T., Zheng, L., Dong, S., Gong, Z., Sang, M., Long, X., & Peng, H. (2019). Rapid detection and classification of citrus fruits infestation by Bactrocera dorsalis (Hendel) based on electronic nose. Postharvest Biology and Technology, 147, 156-165. https://doi.org/10.1016/j.postharvbio.2018.09.017
Widayanti, R., Harahap, E. P., Lutfiani, N., Oganda, F. P., & Manik, I. S. P. (2021). The impact of blockchain technology in higher education quality improvement. J. Ilm. Tek. Elektro Komput. Dan Inform, 7, 207-216. https://doi.org/10.26555/jiteki.v7i2.20677
Wijaya, D. R., Sarno, R., & Zulaika, E. (2021). DWTLSTM for electronic nose signal processing in beef quality monitoring. Sensors and Actuators B: Chemical, 326, 128931. https://doi.org/10.1016/j.snb.2020.128931
Wijaya, D. R., Afianti, F., Arifianto, A., Rahmawati, D., & Kodogiannis, V. S. (2022). Ensemble machine learning approach for electronic nose signal processing. Sensing and Bio-Sensing Research, 36, 100495. https://doi.org/10.1016/j.sbsr.2022.100495
Worku, A., Tóth, T., Orosz, S., Fébel, H., Kacsala, L., Húth, B., & Tóthi, R. (2021). Aroma profile, microbial and chemical quality of ensiled green forages mixtures of winter cereals and Italian ryegrass. Agriculture, 11(6), 512. https://doi.org/10.3390/agriculture11060512
Zhang, F., Iliescu, D. D., Hines, E. L., & Leeson, M. S. (2011). Tomato Plant Health Monitoring: An Electronic Nose Approach. In E. Hines & M. Leeson (Eds.), Intelligent Systems for Machine Olfaction: Tools and Methodologies (pp. 231-248). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-61520-915-6.ch009
Zhang, L., Guan, L., Lu, Z., Li, M., Wu, J., Cao, R., & Tian, J. (2019). Barrier-free patterned paper sensors for multiplexed heavy metal detection. Talanta, 196, 408-414. https://doi.org/10.1016/j.talanta.2018.12.096
Zhao, X. J., Wu, H. L., Pan, L. Q., & Tu, K. (2014). Nondestructive prediction of postharvest strawberry quality by electronic nose. Food Sci, 35(18), 105-109. https://doi.org/10.3390/s20113074
Zheng, Z., Li, L., Makhalanyane, T. P., Xu, C., Li, K., Xue, K., & Hao, Y. (2021). The composition of antibiotic resistance genes is not affected by grazing but is determined by microorganisms in grassland soils. Science of the total environment, 761, 143205. https://doi.org/10.1016/j.scitotenv.2020.143205
Zhou, C. L., Mi, L., Hu, X. Y., & Zhu, B. H. (2017). Evaluation of three pumpkin species: Correlation with physicochemical, antioxidant properties and classification using SPME-GC–MS and E-nose methods. Journal of food science and technology, 54, 3118-3131. https://doi.org/10.1007/s13197-017-2748-8
Zhou, G., Lane, G., Cooper, S. L., Kahnt, T., & Zelano, C. (2019). Characterizing functional pathways of the human olfactory system. eLife, 8, e47177. https://doi.org/10.7554/eLife.47177
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.