Damage Caused by the Spotted Fruit Fly (Drosophila suzukii Matsumura, 1931) to Berries and the Potential Use of Salicylic Acid in Pest Control
DOI:
https://doi.org/10.17108/ActAgrOvar.2025.66.2.67Keywords:
Drosophila suzukii, berry fruits, everbearings, salicylic acid, systemic acquired resistanceAbstract
Drosophila suzukii is a horticultural pest originating from East- Asia that is now widespread globally and causes significant economic losses in berry crops and certain stone fruits. Females possess a serrated ovipositor, enabling them to lay eggs in ripening fruit. As a result, infested berries often drop prematurely, become affected by secondary infections (fungal and bacterial), and are rendered unmarketable. Since there is currently no fully effective control method available in Hungary, the development of alternative strategies is a priority. In berry production, compliance with pre-harvest intervals presents a particular challenge because many species are continuously fruiting or everbearing. Consequently, the development of biological or low-residue plant protection methods is highly desirable. Over recent years, experiments have been conducted to develop natural repellents, the use of parasitoid species, and physical protection strategies, such as isolation; however, these methods and technologies have often failed to deliver consistent results. Following recommendations from plant physiology specialists, experiments using salicylic acid and jasmonic acid formulations were initiated. Both compounds are known to enhance plant immunity by inducing systemic defence responses, thereby improving resistance to pests and pathogens.
The study presents results from trials using a plant conditioning preparation containing salicylic acid, conducted at the Fertőd Research Station of MATE KERTI GYKI. In both 2024 and 2025, a reduction in larval population density within berries was observed. These findings indicate that salicylic acid represents a promising supplementary tool in the control of D. suzukii, warranting further investigation under field conditions.
References
Baser, N., Ouantar, M., Broutou, O., Lamaj, F., Verrastro, V., & Porcelli F. (2015). First finding of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in Apulia, Italy, and its population dynamics throughout the year. Fruits, 70(4), 225-230. https://revues.cirad.fr/index.php/fruits/article/view/32089
Bing, X-L., Winkler, J., Gerlach, J., Loeb, G., & Buchon, N. (2020). Identification of natural pathogens from wild Drosophila suzukii. Pest Management Science, 77(4), 1594-1606. https://doi.org/10.1002/ps.6235
Buck, N., Fountain, M-T., Potts, S-G., Bishop, J., & Garratt, M-P-D. (2022). The effects of non-crop habitat on spotted wing drosophila (Drosophila suzukii) abundance in fruit systems: A meta-analysis. Agricultural and Forest Entomology, 25(1), 66-76. https://doi.org/10.1111/afe.12531
Calabria, G., Maca, J., Bächli, G., Serra, L., & Pascual, M. (2012). First records of Drosophila suzukii (Diptera: Drosophilidae) in Europe. Journal of Applied Entomology, 136(1-2), 139-147. https://doi.org/10.1111/j.1439-0418.2010.01583.x
Casida, J. (2015). Golden Age of RyR and GABA-R Diamide and Isoxazoline Insecticides: Common Genesis, Serendipity, Surprises, Selectivity and Safety. Chemical research in toxicology, 28. https://doi.org/10.1021/tx500520w
Cini, A., Ioriatti, C., & Anfora, G. (2012). A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bulletin of Insectology, 65, 149-160.
Crava, C. M., Zanini, D., Amati, S., Sollai, G., Crnjar, R., Paoli, M., Rossi-Stacconi, M. V., Rota-Stabelli, O., Tait, G., Haase, A., Romani, R., & Anfora, G. (2020). Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. Journal of Insect Physiology, 125. https://doi.org/10.1016/j.jinsphys.2020.104088
Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., & Ryals, J. (1994). A central role of salicylic Acid in plant disease resistance. Science, 266(5188), 1247-1250. https://doi.org/10.1126/science.266.5188.1247
Deutsch, F., & Kiss, B. (2021). Seasonal Abundance Changes of Spotted Wing Drosophila in Neighbouring Habitats in Hungary. In Proceedings of the 1st International Electronic Conference on Entomology, MDPI: Basel, Switzerland, 1-15 July 2021. https://doi.org/10.3390/IECE-10488
Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H.; Tada, Y., & Zheng, N. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402), 228-232. https://doi.org/10.1038/nature11162
Fukuto, T. R. (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectives, 87, 245-254. https://doi.org/10.1289/ehp.9087245
Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., & Ryals, J. (1993). Requirement of salicylic Acid for the induction of systemic acquired resistance. Science. 261(5122), 754-756. https://doi.org/10.1126/science.261.5122.754. PMID: 17757215
Giorgini, M., Wang, X-G., & Wang, Y., … & Guerrieri, E. (2019). Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. Journal of Pest Sciences, 92, 509-522. https://doi.org/10.1007/s10340-018-01068-3
Gombkötő, Cs. (2024). Októberben tetőzik a rajzás. Kertészet és Szőlészet. 73(40), 13.
Guédot, C., Avanesyan, A., & Hietala-Henschell, K. (2018). Effect of Temperature and Humidity on the Seasonal Phenology of Drosophila suzukii (Diptera: Drosophilidae) in Wisconsin. Environmental Entomology, 47(6), 1365-1375. https://doi.org/10.1093/ee/nvy159
Harinda Champa, W. A., Gill, M. I. S., Mahajan, B. V. C., & Arora, N. K. (2014). Preharvest salicylic acid treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless. Journal of Food Science and Technology, 52(6), 3607-3616. https://doi.org/10.1007/s13197-014-1422-7
Hausfather, Z. (2025, July 29). State of the climate: 2025 on track to be second or third warmest year on record. CarbonBrief. https://www.carbonbrief.org/state-of-the-climate-2025-on-track-to-be-second-or-third-warmest-year-on-record
Haviland, D. R., & Beers, E. H. (2012). Chemical Control Programs for Drosophila suzukii that Comply With International Limitations on Pesticide Residues for Exported Sweet Cherries. Journal of Integrated Pest Management, 3(2), F1–F6. https://doi.org/10.1603/IPM11034
Horváth, Cs. (2023). Nagy gond a foltosszárnyú muslinca elleni védekezés. Kertészet és Szőlészet, 72(41), 12-13.
Hou, S., & Tsuda, K. (2022). Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays in Biochemistry, 66(5), 647-656. https://doi.org/10.1042/EBC20210090
Ioriatti, C., Guzzon, R., Anfora, G., Ghidoni, F., Mazzoni, V., Villegas, T. R., Dalton, D. T., & Walton, V. M. (2018). Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape. Journal of Economic Entomology, 111(1), 283-292. https://doi.org/10.1093/jee/tox292
Jarrett, B. J. M., Linder, S., Fanning, P. D., Isaacs, R., & Szűcs, M. (2022). Experimental adaptation of native parasitoids to the invasive insect pest, Drosophila suzukii. Biological Control, 167. https://doi.org/10.1016/j.biocontrol.2022.104843
Kanzawa, T. (1939). Studies on Drosophila suzukii Mats. Kofu. Review of Applied Entimology, 29, 622.
Keesey, I-W., Knaden, M., & Hansson, B-S. (2015). Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. Journal of Chemical Ecology, 41, 121-128. https://link.springer.com/article/10.1007/s10886-015-0544-3
Kenis, M., Tonina, L., & Eschen, R. (2016). Non-crop plants used as hosts by Drosophila suzukii in Europe. Journal of Pest Sciences, 89, 735-748. https://doi.org/10.1007/s10340-016-0755-6
Kim, T-J.; & Lim, G-H. (2023). Salicylic Acid and Mobile Regulators of Systemic Immunity in Plants: Transport and Metabolism. Plants, 12(5), 1013. https://doi.org/10.3390/plants12051013
Kinjo, H., Kunimi, Y., & Nakai, M. (2014). Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Applied Entomology and Zoology, 49, 297-304. https://doi.org/10.1007/s13355-014-0249-z
Király, Z. (2004). Types and mechanisms of plant resistance (in Hungarian). Magyar Tudomány, 10, 1090-1094.
Kirschbaum, D. S., Funes, C. F., Buonocore-Biancheri, M. J., Suárez, L., & Ovruski, S. M. (2020). The Biology and Ecology of Drosophila suzukii (Diptera: Drosophilidae). In Garcia, F. R. M. (Ed.) Drosophila suzukii Management (pp. 41-91). Springer, Cham. https://doi.org/10.1007/978-3-030-62692-1_4
Knoll, V., Ellenbroek, T., & Romeis, J. (2017). Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii. Scientific Reports, 7, 40697. https://doi.org/10.1038/srep40697
Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathology, 36(1), 1-10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
Lee, J. C., Bruck, D. J., Dreves, A. J., Ioriatti, C., Vogt, H., & Baufeld P. (2011). In Focus: Spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Management Science, 67(11), 1349-1351. https://doi.org/10.1002/ps.2271
Liu, S., Gao, H-H., Chen, H., Zheng, L., Yu, Y., & Zhai, Y. (2019). Effects of temperature and relative humidity on the flight ability of Drosophila suzukii and Drosophila melanogaster. Journal of Plant Protection, 46(6), 1284-1291. https://doi.org/10.13802/j.cnki.zwbhxb.2019.2018212
Ma, C-S., Zhang, W., Peng, Y., Zhao, F., Chang, X-Q., Xing, K., Zhu, L., Ma, G., Yang, H-P., & Rudolf, V-H-W. (2021). Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12, 5351. https://doi.org/10.1038/s41467-021-25505-7
MacFarland, T-W., & Yates, J-M. (2016). Mann–Whitney U Test. In Introduction to Nonparametric Statistics for the Biological Sciences Using. R (pp. 103-132). Springer, Cham. https://doi.org/10.1007/978-3-319-30634-6_4
McKnight, P. E., & Najab, J. (2010). Mann-Whitney U-Test. John Wiley & Sons. https://doi.org/10.1002/9780470479216.corpsy0524
Németh, E-K., Varga, J., Gombkötő, N., Kollányi, Á., Kisné, T-A., & Gombkötő, Cs. (2024). Options of Integrated Pest Management (IPM) of Drosophila suzukii. Gradus, 11(3). https://doi.org/10.47833/2024.3.AGR.004
Poyet, M., Le Roux, V., Gilbert, P., Meirland, A., Prévost, G., Eslin, P, & Chabrerie, O. (2015). The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe? PloS one, 10(11), e0142785. https://doi.org/10.1371/journal.pone.0142785
Revadi, S., Vitagliano, S., Rossi Stacconi, M. V., Ramasamy, S., Mansourian, S., Carlin, S., Vrhovsek, U., Becher, P. G., Mazzoni, V., Rota-Stabelli, O., Angeli, S., Dekker, T., & Anfora, G. (2015). Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiological Entomology, 40(1), 54-64. https://doi.org/10.1111/phen.12088
Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340-358. https://doi.org/10.1016/0042-6822(61)90319-1
Sánchez-Bayo, F. (2012). Insecticides mode of action in relation to their toxicity to non-target organisms. Journal of Environmental and Analytical Toxicology, S4, S4-002. https://doi.org/10.4172/2161-0525.S4-002
Shawer, R. (2020). Chemical Control of Drosophila suzukii. In Garcia, F. R. M. (Ed.) Drosophila suzukii Management (pp. 133-142). Springer, Cham. https://doi.org/10.1007/978-3-030-62692-1_7
Shimono, M., Sugano, S., Nakayama, A., Jiang, C-J. Ono, K., Toki, S., & Takatsuji, H. (2007). Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. The Plant Cell, 19(6), 2064-2076. https://doi.org/10.1105/tpc.106.046250
Tian, H., Xu, L., Li, X., & Zhang, Y. (2025). Salicylic acid: The roles in plant immunity and crosstalk with other hormones. Journal of Integrated Plant Biology, 67(3), 773-785. https://doi.org/10.1111/jipb.13820
Vlot, A. C., Sales, J. H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., & Nayem, S. (2021). Systemic propagation of immunity in plants. New Phytology, 229(3), 1234-1250. https://doi.org/10.1111/nph.16953
Walsh, D. B., Bolda, M. P., & Goodhue, R. E., … & Zalom, F. G. (2011). Drosophila suzukii (Diptera: Drosophilidae): invasive species of management concern for sweet cherry, blueberry, and raspberry. Journal of Integrated Pest Management, 2(1), 1-7. https://doi.org/10.1603/IPM10010
Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahlgoy, P., Metraux, J-P., & Ryals, J. A. (1991). Coordinated gene activity in response to agents that induce systemic acquired resistance, The Plant Cell, 3(10), 1085-1094. https://doi.org/10.2307/3869297
Winkler, A., Jung, J., Kleinhenz, B., & Racca, P. (2021). Estimating temperature effects on Drosophila suzukii life cycle parameters. Agricultural and Forest Entomology, 23. https://doi.org/10.1111/afe.12438
Yan, S., & Dong, X. (2014). Perception of the plant immune signal salicylic acid. Current Opinion in Plant Biology, 20, 64-68. https://doi.org/10.1016/j.pbi.2014.04.006
Zavaliev, R., Mohan, R., Chen, T., & Dong, X. (2020). Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell, 182(5), 1093–1108.e18. https://doi.org/10.1016/j.cell.2020.07.016
Zerulla, F. N., Schmidt, S., Streitberger, M., Zebitz, C. P. W., & Zelger, R. (2015). On the overwintering ability of Drosophila suzukii in South Tyrol. Journal of Berry Research, 5(1), 41-48. https://doi.org/10.3233/JBR-150089
Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50. https://doi.org/10.1016/j.pbi.2019.02.004
Zhang, P., Jackson, E., Li, X., & Zhang, Y. (2025). Salicylic acid and jasmonic acid in plant immunity. Horticultural Researches, 12 (7): uhaf082. https://doi.org/10.1093/hr/uhaf082
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
