A foltosszárnyú muslica (Drosophila suzukii Matsumura, 1931) kártétele bogyós gyümölcsökben, és a szalicilsav, mint lehetőség a kártevő elleni védekezésben

Szerzők

  • Csilla Gombkötő Magyar Agrár- és Élettudományi Egyetem, Kertészettudományi Intézet, Gyümölcstermesztési Kutatóközpont, Fertődi Kutatóállomás, Sarród https://orcid.org/0009-0000-4689-2858
  • Ágnes Kollányi Magyar Agrár- és Élettudományi Egyetem, Kertészettudományi Intézet, Gyümölcstermesztési Kutatóközpont, Fertődi Kutatóállomás, Sarród https://orcid.org/0009-0004-7999-0891
  • Gábor Kollányi Magyar Agrár- és Élettudományi Egyetem, Kertészettudományi Intézet, Gyümölcstermesztési Kutatóközpont, Fertődi Kutatóállomás, Sarród
  • Jenő Varga Magyar Agrár- és Élettudományi Egyetem, Kertészettudományi Intézet, Gyümölcstermesztési Kutatóközpont, Fertődi Kutatóállomás, Sarród https://orcid.org/0009-0008-8533-7628

DOI:

https://doi.org/10.17108/ActAgrOvar.2025.66.2.67

Kulcsszavak:

Drosophila suzukii, bogyós gyümölcsök, folytontermők, szalicilsav, szisztémás szerzett rezisztencia

Absztrakt

A foltosszárnyú, vagy pettyesszárnyú muslica (Drosophila suzukii) egy Kelet-Ázsiából származó, de napjainkban egész világon jól ismert kertészeti kártevő, amely főként a bogyós gyümölcsökben, illetve egyes csonthéjas növényeken okoz súlyos gazdasági károkat. A nőivarú egyedek fűrészes tojócsővel rendelkeznek. Az érőfélben lévő gyümölcsbe petét helyezve a bogyó lehullik, másodlagos fertőzések (gombák, baktériumok) révén rothad és eladhatatlanná válik. Mivel napjainkban hazánkban még nincs teljesen bevált védekezési eljárás a kártevő ellen, fontos, hogy azt minél előbb megtaláljuk. A bogyós gyümölcsöknél külön nehézséget jelent az élelmezési várakozási idő betartása, mivel általában folytonérő fajokról van szó, ezért lenne kívánatos egy biológiai növényvédelmi módszer kidolgozása. Évek óta folynak kísérletek természetes eredetű repellens anyagok kidolgozására, parazitoid fajok alkalmazására, a terület izolálására. Ezek a módszerek, technológiák azonban gyakran nem hozzák meg a hozzájuk fűzött reményeket. A növényélettannal foglalkozó szakemberek javaslataira indultak kísérletek a szalicilsavas, illetve jázmonsavas készítményekkel való kezelésekre. Ezek ugyanis képesek növelni a növények immunitását, könnyebben kivédve ezáltal a kórokozók, kártevők támadásait. A cikk egy szalicilsav tartalmú növénykondicionáló készítménnyel történt kezelés tapasztalatait írja le, amelyet a MATE KERTI GYKI Fertődi Kutatóállomásán hajtottak végre. A 2024-es és 2025-ös években a bogyókban lévő lárvapopuláció nagysága mérséklődött, ezért a szalicilsav – az eddigi tapasztalatok alapján és későbbiekben folytatódó kísérletek mellett – ígéretes alternatívának mutatkozik a kártevő elleni védekezésben.

Hivatkozások

Baser, N., Ouantar, M., Broutou, O., Lamaj, F., Verrastro, V., & Porcelli F. (2015). First finding of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in Apulia, Italy, and its population dynamics throughout the year. Fruits, 70(4), 225-230. https://revues.cirad.fr/index.php/fruits/article/view/32089

Bing, X-L., Winkler, J., Gerlach, J., Loeb, G., & Buchon, N. (2020). Identification of natural pathogens from wild Drosophila suzukii. Pest Management Science, 77(4), 1594-1606. https://doi.org/10.1002/ps.6235

Buck, N., Fountain, M-T., Potts, S-G., Bishop, J., & Garratt, M-P-D. (2022). The effects of non-crop habitat on spotted wing drosophila (Drosophila suzukii) abundance in fruit systems: A meta-analysis. Agricultural and Forest Entomology, 25(1), 66-76. https://doi.org/10.1111/afe.12531

Calabria, G., Maca, J., Bächli, G., Serra, L., & Pascual, M. (2012). First records of Drosophila suzukii (Diptera: Drosophilidae) in Europe. Journal of Applied Entomology, 136(1-2), 139-147. https://doi.org/10.1111/j.1439-0418.2010.01583.x

Casida, J. (2015). Golden Age of RyR and GABA-R Diamide and Isoxazoline Insecticides: Common Genesis, Serendipity, Surprises, Selectivity and Safety. Chemical research in toxicology, 28. https://doi.org/10.1021/tx500520w

Cini, A., Ioriatti, C., & Anfora, G. (2012). A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bulletin of Insectology, 65, 149-160.

Crava, C. M., Zanini, D., Amati, S., Sollai, G., Crnjar, R., Paoli, M., Rossi-Stacconi, M. V., Rota-Stabelli, O., Tait, G., Haase, A., Romani, R., & Anfora, G. (2020). Structural and transcriptional evidence of mechanotransduction in the Drosophila suzukii ovipositor. Journal of Insect Physiology, 125. https://doi.org/10.1016/j.jinsphys.2020.104088

Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., & Ryals, J. (1994). A central role of salicylic Acid in plant disease resistance. Science, 266(5188), 1247-1250. https://doi.org/10.1126/science.266.5188.1247

Deutsch, F., & Kiss, B. (2021). Seasonal Abundance Changes of Spotted Wing Drosophila in Neighbouring Habitats in Hungary. In Proceedings of the 1st International Electronic Conference on Entomology, MDPI: Basel, Switzerland, 1-15 July 2021. https://doi.org/10.3390/IECE-10488

Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., Mohan, R., Spoel, S. H.; Tada, Y., & Zheng, N. (2012). NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature, 486(7402), 228-232. https://doi.org/10.1038/nature11162

Fukuto, T. R. (1990). Mechanism of action of organophosphorus and carbamate insecticides. Environmental Health Perspectives, 87, 245-254. https://doi.org/10.1289/ehp.9087245

Gaffney, T., Friedrich, L., Vernooij, B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., & Ryals, J. (1993). Requirement of salicylic Acid for the induction of systemic acquired resistance. Science. 261(5122), 754-756. https://doi.org/10.1126/science.261.5122.754. PMID: 17757215

Giorgini, M., Wang, X-G., & Wang, Y., … & Guerrieri, E. (2019). Exploration for native parasitoids of Drosophila suzukii in China reveals a diversity of parasitoid species and narrow host range of the dominant parasitoid. Journal of Pest Sciences, 92, 509-522. https://doi.org/10.1007/s10340-018-01068-3

Gombkötő, Cs. (2024). Októberben tetőzik a rajzás. Kertészet és Szőlészet. 73(40), 13.

Guédot, C., Avanesyan, A., & Hietala-Henschell, K. (2018). Effect of Temperature and Humidity on the Seasonal Phenology of Drosophila suzukii (Diptera: Drosophilidae) in Wisconsin. Environmental Entomology, 47(6), 1365-1375. https://doi.org/10.1093/ee/nvy159

Harinda Champa, W. A., Gill, M. I. S., Mahajan, B. V. C., & Arora, N. K. (2014). Preharvest salicylic acid treatments to improve quality and postharvest life of table grapes (Vitis vinifera L.) cv. Flame Seedless. Journal of Food Science and Technology, 52(6), 3607-3616. https://doi.org/10.1007/s13197-014-1422-7

Hausfather, Z. (2025, July 29). State of the climate: 2025 on track to be second or third warmest year on record. CarbonBrief. https://www.carbonbrief.org/state-of-the-climate-2025-on-track-to-be-second-or-third-warmest-year-on-record

Haviland, D. R., & Beers, E. H. (2012). Chemical Control Programs for Drosophila suzukii that Comply With International Limitations on Pesticide Residues for Exported Sweet Cherries. Journal of Integrated Pest Management, 3(2), F1–F6. https://doi.org/10.1603/IPM11034

Horváth, Cs. (2023). Nagy gond a foltosszárnyú muslinca elleni védekezés. Kertészet és Szőlészet, 72(41), 12-13.

Hou, S., & Tsuda, K. (2022). Salicylic acid and jasmonic acid crosstalk in plant immunity. Essays in Biochemistry, 66(5), 647-656. https://doi.org/10.1042/EBC20210090

Ioriatti, C., Guzzon, R., Anfora, G., Ghidoni, F., Mazzoni, V., Villegas, T. R., Dalton, D. T., & Walton, V. M. (2018). Drosophila suzukii (Diptera: Drosophilidae) Contributes to the Development of Sour Rot in Grape. Journal of Economic Entomology, 111(1), 283-292. https://doi.org/10.1093/jee/tox292

Jarrett, B. J. M., Linder, S., Fanning, P. D., Isaacs, R., & Szűcs, M. (2022). Experimental adaptation of native parasitoids to the invasive insect pest, Drosophila suzukii. Biological Control, 167. https://doi.org/10.1016/j.biocontrol.2022.104843

Kanzawa, T. (1939). Studies on Drosophila suzukii Mats. Kofu. Review of Applied Entimology, 29, 622.

Keesey, I-W., Knaden, M., & Hansson, B-S. (2015). Olfactory specialization in Drosophila suzukii supports an ecological shift in host preference from rotten to fresh fruit. Journal of Chemical Ecology, 41, 121-128. https://link.springer.com/article/10.1007/s10886-015-0544-3

Kenis, M., Tonina, L., & Eschen, R. (2016). Non-crop plants used as hosts by Drosophila suzukii in Europe. Journal of Pest Sciences, 89, 735-748. https://doi.org/10.1007/s10340-016-0755-6

Kim, T-J.; & Lim, G-H. (2023). Salicylic Acid and Mobile Regulators of Systemic Immunity in Plants: Transport and Metabolism. Plants, 12(5), 1013. https://doi.org/10.3390/plants12051013

Kinjo, H., Kunimi, Y., & Nakai, M. (2014). Effects of temperature on the reproduction and development of Drosophila suzukii (Diptera: Drosophilidae). Applied Entomology and Zoology, 49, 297-304. https://doi.org/10.1007/s13355-014-0249-z

Király, Z. (2004). Types and mechanisms of plant resistance (in Hungarian). Magyar Tudomány, 10, 1090-1094.

Kirschbaum, D. S., Funes, C. F., Buonocore-Biancheri, M. J., Suárez, L., & Ovruski, S. M. (2020). The Biology and Ecology of Drosophila suzukii (Diptera: Drosophilidae). In Garcia, F. R. M. (Ed.) Drosophila suzukii Management (pp. 41-91). Springer, Cham. https://doi.org/10.1007/978-3-030-62692-1_4

Knoll, V., Ellenbroek, T., & Romeis, J. (2017). Seasonal and regional presence of hymenopteran parasitoids of Drosophila in Switzerland and their ability to parasitize the invasive Drosophila suzukii. Scientific Reports, 7, 40697. https://doi.org/10.1038/srep40697

Koo, Y. M., Heo, A. Y., & Choi, H. W. (2020). Salicylic Acid as a Safe Plant Protector and Growth Regulator. Plant Pathology, 36(1), 1-10. https://doi.org/10.5423/PPJ.RW.12.2019.0295

Lee, J. C., Bruck, D. J., Dreves, A. J., Ioriatti, C., Vogt, H., & Baufeld P. (2011). In Focus: Spotted wing drosophila, Drosophila suzukii, across perspectives. Pest Management Science, 67(11), 1349-1351. https://doi.org/10.1002/ps.2271

Liu, S., Gao, H-H., Chen, H., Zheng, L., Yu, Y., & Zhai, Y. (2019). Effects of temperature and relative humidity on the flight ability of Drosophila suzukii and Drosophila melanogaster. Journal of Plant Protection, 46(6), 1284-1291. https://doi.org/10.13802/j.cnki.zwbhxb.2019.2018212

Ma, C-S., Zhang, W., Peng, Y., Zhao, F., Chang, X-Q., Xing, K., Zhu, L., Ma, G., Yang, H-P., & Rudolf, V-H-W. (2021). Climate warming promotes pesticide resistance through expanding overwintering range of a global pest. Nature Communications, 12, 5351. https://doi.org/10.1038/s41467-021-25505-7

MacFarland, T-W., & Yates, J-M. (2016). Mann–Whitney U Test. In Introduction to Nonparametric Statistics for the Biological Sciences Using. R (pp. 103-132). Springer, Cham. https://doi.org/10.1007/978-3-319-30634-6_4

McKnight, P. E., & Najab, J. (2010). Mann-Whitney U-Test. John Wiley & Sons. https://doi.org/10.1002/9780470479216.corpsy0524

Németh, E-K., Varga, J., Gombkötő, N., Kollányi, Á., Kisné, T-A., & Gombkötő, Cs. (2024). Options of Integrated Pest Management (IPM) of Drosophila suzukii. Gradus, 11(3). https://doi.org/10.47833/2024.3.AGR.004

Poyet, M., Le Roux, V., Gilbert, P., Meirland, A., Prévost, G., Eslin, P, & Chabrerie, O. (2015). The Wide Potential Trophic Niche of the Asiatic Fruit Fly Drosophila suzukii: The Key of Its Invasion Success in Temperate Europe? PloS one, 10(11), e0142785. https://doi.org/10.1371/journal.pone.0142785

Revadi, S., Vitagliano, S., Rossi Stacconi, M. V., Ramasamy, S., Mansourian, S., Carlin, S., Vrhovsek, U., Becher, P. G., Mazzoni, V., Rota-Stabelli, O., Angeli, S., Dekker, T., & Anfora, G. (2015). Olfactory responses of Drosophila suzukii females to host plant volatiles. Physiological Entomology, 40(1), 54-64. https://doi.org/10.1111/phen.12088

Ross, A. F. (1961). Systemic acquired resistance induced by localized virus infections in plants. Virology, 14(3), 340-358. https://doi.org/10.1016/0042-6822(61)90319-1

Sánchez-Bayo, F. (2012). Insecticides mode of action in relation to their toxicity to non-target organisms. Journal of Environmental and Analytical Toxicology, S4, S4-002. https://doi.org/10.4172/2161-0525.S4-002

Shawer, R. (2020). Chemical Control of Drosophila suzukii. In Garcia, F. R. M. (Ed.) Drosophila suzukii Management (pp. 133-142). Springer, Cham. https://doi.org/10.1007/978-3-030-62692-1_7

Shimono, M., Sugano, S., Nakayama, A., Jiang, C-J. Ono, K., Toki, S., & Takatsuji, H. (2007). Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. The Plant Cell, 19(6), 2064-2076. https://doi.org/10.1105/tpc.106.046250

Tian, H., Xu, L., Li, X., & Zhang, Y. (2025). Salicylic acid: The roles in plant immunity and crosstalk with other hormones. Journal of Integrated Plant Biology, 67(3), 773-785. https://doi.org/10.1111/jipb.13820

Vlot, A. C., Sales, J. H., Lenk, M., Bauer, K., Brambilla, A., Sommer, A., Chen, Y., Wenig, M., & Nayem, S. (2021). Systemic propagation of immunity in plants. New Phytology, 229(3), 1234-1250. https://doi.org/10.1111/nph.16953

Walsh, D. B., Bolda, M. P., & Goodhue, R. E., … & Zalom, F. G. (2011). Drosophila suzukii (Diptera: Drosophilidae): invasive species of management concern for sweet cherry, blueberry, and raspberry. Journal of Integrated Pest Management, 2(1), 1-7. https://doi.org/10.1603/IPM10010

Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C., Ahlgoy, P., Metraux, J-P., & Ryals, J. A. (1991). Coordinated gene activity in response to agents that induce systemic acquired resistance, The Plant Cell, 3(10), 1085-1094. https://doi.org/10.2307/3869297

Winkler, A., Jung, J., Kleinhenz, B., & Racca, P. (2021). Estimating temperature effects on Drosophila suzukii life cycle parameters. Agricultural and Forest Entomology, 23. https://doi.org/10.1111/afe.12438

Yan, S., & Dong, X. (2014). Perception of the plant immune signal salicylic acid. Current Opinion in Plant Biology, 20, 64-68. https://doi.org/10.1016/j.pbi.2014.04.006

Zavaliev, R., Mohan, R., Chen, T., & Dong, X. (2020). Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell, 182(5), 1093–1108.e18. https://doi.org/10.1016/j.cell.2020.07.016

Zerulla, F. N., Schmidt, S., Streitberger, M., Zebitz, C. P. W., & Zelger, R. (2015). On the overwintering ability of Drosophila suzukii in South Tyrol. Journal of Berry Research, 5(1), 41-48. https://doi.org/10.3233/JBR-150089

Zhang, Y., & Li, X. (2019). Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Current Opinion in Plant Biology, 50. https://doi.org/10.1016/j.pbi.2019.02.004

Zhang, P., Jackson, E., Li, X., & Zhang, Y. (2025). Salicylic acid and jasmonic acid in plant immunity. Horticultural Researches, 12 (7): uhaf082. https://doi.org/10.1093/hr/uhaf082

Downloads

Megjelent

2025-12-22

Hogyan kell idézni

Gombkötő, C., Kollányi, Ágnes, Kollányi, G., & Varga, J. (2025). A foltosszárnyú muslica (Drosophila suzukii Matsumura, 1931) kártétele bogyós gyümölcsökben, és a szalicilsav, mint lehetőség a kártevő elleni védekezésben. Acta Agronomica Óváriensis, 66(2), 67–83. https://doi.org/10.17108/ActAgrOvar.2025.66.2.67

Folyóirat szám

Rovat

Kísérletes tanulmányok